The Role of Geopolymer Concrete in Achieving Sustainable Development Goals

Authors

  • Kevin Aprilio Wibowo
  • Jack Widjajakusuma

DOI:

https://doi.org/10.19166/jstfast.v9i2.10386

Keywords:

Cement; Construction; Geopolymer Concrete; Pozzolanic; Sustainable Development Goals

Abstract

A sense of safety and comfort is a fundamental right for all people. The United Nations strives to fulfil this through the establishment of 17 Sustainable Development Goals (SDGs). The construction sector plays a significant role in achieving these goals, particularly in the areas of Good Health and Well-being, Clean Water and Sanitation, Decent Work and Economic Growth, Sustainable Cities and Communities, Responsible Consumption and Production, and Climate Action. One key effort in the construction sector is replacing Portland cement with pozzolanic materials. Cement production emits large amounts of carbon dioxide, contributing substantially to global warming. To address this, pozzolanic materials such as fly ash are used as a substitute for cement in the production of geopolymer concrete. Based on compressive strength tests on cylindrical specimens and flexural strength tests on beam specimens, geopolymer concrete demonstrates high potential for structural applications. Its mechanical performance is comparable to that of conventional concrete, making it a promising alternative that supports sustainable development in the construction industry.

References

Alfathy, R. M., Saputro, S., Sarwanto, & Ramli, M. (2024). Implementation of sustainable development goals in higher education modalities: Literature review. Journal of Turkish Science Education, 21(1), 22–43. https://doi.org/10.36681/tused.2024.002

Arıoğlu Akan, M. Ö., Dhavale, D. G., & Sarkis, J. (2017). Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production, 167, 1195–1207. https://doi.org/10.1016/j.jclepro.2017.07.225

Badan Standardisasi Nasional. (2002). Spesifikasi Bahan Bangunan Bagian A (Bahan Bangunan Bukan Logam) SNI 03-6861.1-2002. BSN.

Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161. https://doi.org/10.1016/j.jclepro.2012.10.049

Cahyadi, R., Kusumaningrum, D., & Prasetyoputra, P. (2022). Self-supplied water in Indonesia: recent spatial and socio-demographic conditions and its future development. IOP Conference Series: Earth and Environmental Science, 1062(1), 012038. https://doi.org/10.1088/1755-1315/1062/1/012038

China Research and Intelligence. (2024). Indonesia Cement Industry Research Report 2024-2033. In CRI.

Danareksa Research Institute. (2023). Pengelolaan Air Bersih Berkelanjutan.

Fei, W., Opoku, A., Agyekum, K., Oppon, J. A., Ahmed, V., Chen, C., & Lok, K. L. (2021). The Critical Role of the Construction Industry in Achieving the Sustainable Development Goals (SDGs): Delivering Projects for the Common Good. Sustainability, 13(16), 9112. https://doi.org/10.3390/su13169112

Guo, X., Shi, H., & Dick, W. A. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement and Concrete Composites, 32(2), 142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003

Kementerian Sekretariat Negara Republik Indonesia. (2022). Peraturan Presiden (PERPRES) Nomor 111 Tahun 2022 : Pelaksanaan Pencapaian Tujuan Pembangunan Berkelanjutan.

Mehta, K. (2001). Reducing the Environmental Impact of Concrete. Concrete International, 23, 61–66.

Nielsen, C. V., & Glavind, M. (2007). Danish Experiences with a Decade of Green Concrete. Journal of Advanced Concrete Technology, 5(1), 3–12. https://doi.org/10.3151/jact.5.3

Prayoga, M. B. R., & Afla, R. A. (2023). Utilization of fly ash and bottom ash waste: a study at PLTU tanjung jati B, Jepara, Indonesia. Asean Journal of Toxicology, Environmental, and Occupational Health, 1(1), 9–19.

Ralli, Z. G., & Pantazopoulou, S. J. (2021). State of the art on geopolymer concrete. International Journal of Structural Integrity, 12(4), 511–533. https://doi.org/10.1108/IJSI-05-2020-0050

Rashad, A. M., & Zeedan, S. R. (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, 25(7), 3098–3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044

Sachs, J. D., Lafortune, G., & Fuller, G. (2024). Sustainable Development Report 2024.

Sachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G., & Fuller, G. (2019). Sustainable Development Report 2019.

Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455

Wibowo, K. A., Christianto, D., & Widjajakusuma, J. (2024). Peningkatan Kuat Tekan pada Beton Geopolimer Akibat Metode Perawatan Dipanaskan. JMTS: Jurnal Mitra Teknik Sipil, 79–86. https://doi.org/10.24912/jmts.v7i1.25150

Widjajakusuma, J., Bali, I., Ng, G. P., & Wibowo, K. A. (2022). An Experimental Study on the Mechanical Properties of Low-Aluminum and Rich-Iron-Calcium Fly Ash-Based Geopolymer Concrete. Advances in Technology Innovation, 7(4), 295–302. https://doi.org/10.46604/aiti.2022.10525

Yu, Q., Li, S., Li, H., Chai, X., Bi, X., Liu, J., & Ohnuki, T. (2019). Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co. Journal of Cleaner Production, 234, 97–104. https://doi.org/10.1016/j.jclepro.2019.06.149

Downloads

Published

2025-11-11

Issue

Section

Articles