SISTEM INFORMASI MANAJEMEN PENGKLASIFIKASIAN HADIST SHAHIH BUKHARI DAN MUSLIM MENGGUNAKAN ALGORITMA NEURAL NETWORK

Penulis

  • Rasenda Rasenda Universitas Teknologi Muhammadiyah Jakarta
  • Nova Rini Universitas Teknologi Muhammadiyah Jakarta
  • Supriatiningsih Supriatiningsih Universitas Teknologi Muhammadiyah Jakarta

Kata Kunci:

Classification, Neural Network, System Information Management, Hadith

Abstrak

In the book of Bukhari and Muslim hadith there are 7008 hadith sentences, of the 7008 sentences the Hadith is not yet known a hadith included in the category of prohibitions or orders. By doing the classification, it will be easier for readers to understand the hadith. The classification of hadiths is done in several stages, including: pre-processing text, the use of word vector features, and modeling of neural network architecture with multilayer perceptron. The use of layers in neural networks and feature extraction with word vectors has proven to provide good results for the classification of hadiths. The results showed a fairly high degree of accuracy that is equal to 97.72% by using two layers and 256 neurons, this research can be used to classify hadiths which have the impact of making it easier for people to understand hadiths very well.

Referensi

Abdelaal, H. M., & Youness, H. A. (2019). Hadith Classification using Machine Learning Techniques According to its Reliability. 22(3), 259-271.

Faraby, S. Al, Riviera, E., & Jasin, R. (2018). Classification of hadith into positive suggestion, negative suggestion, and information.

Ghufran, M., & Faraby, S. Al. (2018). Penerapan Particle Swarm Optimization Pada Feedforward Neural Network Untuk Klasifikasi Teks Hadis Bukhari Terjemahan Bahasa Indonesia. 2(4), 165-173.

Hastuti, K. (2012). Analisis komparasi algoritma klasifikasi data mining untuk prediksi mahasiswa non aktif. Seminar Nasional Teknologi Informasi & Komunikasi Terapan.

Kusumaningrum, A., & Al-faraby, S. (2017). Klasifikasi Informasi , Anjuran dan Larangan pada Hadits Shahih Bukhari menggunakan Metode Support Vector Machine . 4(3), 5014-5023.

M, H., & M.N, S. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01-11. https://doi.org/10.5121/ijdkp.2015.5201

Nuha, U., & Rochmawati, N. (2019). Klasifikasi Kesahihan Hadits Berdasarkan Perawi Hadits Menggunakan Principal Component Analysis ( PCA ) dan Backpropagation Neural Network ( BPNN ). 01, 138-143.

Park, S., Byun, J., Baek, S., Cho, Y., & Oh, A. (2018). Subword-level Word Vector Representations for Korean. 2429-2438.

Riviera, E., Jasin, R., & Al-faraby, S. (2017). Klasifikasi Anjuran , Larangan dan Informasi pada Hadis Sahih Al-Bukhari berdasarkan Model Unigram menggunakan Artificial Neural Network ( ANN ). 4(3), 4683-4694.

Yuslan, M., & Bakar, A. (2018). Multi-Label Topic Classification of Hadith of Bukhari ( Indonesian Language translation ) using Information Gain and Backpropagation Neural Network. 2018 International Conference on Asian Language Processing (IALP), 344-350.

Krieger, C. (1996). Neural Networks in Data Mining.

Jarvis, E. D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., ... & Striedter, G. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 6(2), 151-159.

Diterbitkan

2024-09-16

Terbitan

Bagian

BIDANG KAJIAN KEWIRAUSAHAAN DAN BISNIS INTERNASIONAL