RANCANG BANGUN SISTEM PEMANTAUAN DAN KONTROL INTENSITAS CAHAYA SERTA PENYIRAMAN TANAMAN OTOMATIS PADA GREENHOUSE BERBASIS INTERNET OF THINGS [DESIGN AND CONSTRUCTION OF A SYSTEM FOR MONITORING AND CONTROLLING LIGHT INTENSITY AND AUTOMATIC WATERING OF PLANTS IN A GREENHOUSE BASED ON THE INTERNET OF THINGS]
DOI:
https://doi.org/10.19166/jstfast.v8i2.9030Keywords:
Internet of Things, environment monitoring, environment control, greenhouseAbstract
Agriculture is an important sector in a country's economy, but with the increasing population growth, the challenges in agriculture are becoming increasingly complex. One of the main challenges is maintaining the quality and quantity of plants product. Greenhouses are an effective solution to control the plant growth environment. However, environmental management in conventional greenhouses today requires a lot of labor and high costs. To address this challenge, there is an urgent need to develop an automation system capable of monitoring plant conditions and controlling the light intensity and watering of plants in greenhouse plants. The system uses Internet of Things (IoT) technology with an ESP32 Devkit v1 microcontroller module for automatic and real-time monitoring and control of the plant growth environment. Through the implementation of carbon dioxide (CO2), light intensity, soil pH, and soil moisture quality monitoring systems along with automatic control of light intensity and watering of plants in greenhouses, it is hoped that agricultural productivity can be increased. Sensor data were taken and read by the microcontroller which is then displayed and sent to 4 platforms, namely Serial Monitor, LCD OLED, website Platform, and Google Sheets. The microcontroller successfully reads the data of the installed sensors and sent in real-time to multiple platforms. These test data provide a concrete picture of the performance of the developed greenhouse plant monitoring and control system. The results of verification to commercial measuring instruments showed that the LDR sensor had an average error of 1.15%, the CO2 sensor had an error of 0.86%, the soil pH sensor had an error of 3.22%, and the soil moisture sensor had an error of 1.46%. Functional tests show that the system responds to turn on the growlight when the light intensity drops to 500 Lux and turn on the pump when the soil moisture drops below 40% according to the threshold points setting.
Bahasa Indonesia Abstract:Pertanian adalah sektor penting dalam perekonomian suatu negara, namun dengan pertumbuhan penduduk yang terus meningkat, tantangan dalam pertanian menjadi semakin kompleks. Salah satu tantangan utama adalah menjaga kualitas dan kuantitas hasil tanaman. Greenhouse adalah solusi efektif untuk mengendalikan lingkungan pertumbuhan tanaman. Namun, pengelolaan lingkungan dalam greenhouse konvensional saat ini memerlukan banyak tenaga kerja dan biaya yang tinggi. Untuk mengatasi tantangan ini, ada kebutuhan mendesak untuk mengembangkan sistem otomatis yang mampu memantau kondisi tanaman dan mengontrol intensitas cahaya serta penyiraman tanaman pada greenhouse. Sistem ini menggunakan teknologi Internet of Things (IoT) dengan mikrokontroler ESP32 Devkit v1 untuk pemantauan dan kontrol otomatis realtime pada lingkungan pertumbuhan tanaman. Melalui implementasi sistem pemantauan konsentrasi karbon dioksida (CO2), intensitas cahaya, pH tanah dan kelembapan tanah serta kontrol otomatis intensitas cahaya dan penyiraman tanaman otomatis, diharapkan produktivitas pertanian dapat ditingkatkan. Data-data sensor diambil dan dibaca oleh mikrokontroler yang kemudian ditampilkan dan dikirimkan ke 4 platform, yaitu Serial Monitor, LCD OLED, platform website, dan Google Spreadsheet. Mikrokontroler berhasil membaca data-data sensor yang terpasang, dan mengirimkan secara realtime pada platform-platform tersebit. Data-data pengujian ini memberikan gambaran konkret tentang kinerja sistem pemantauan dan kontrol tanaman greenhouse yang dikembangkan. Hasil verifikasi terhadap alat ukur komersial menunjukkan sensor LDR mempunyai kesalahan sebesar 1.15%, sensor CO2 mempunyai kesalahan sebesar 0.86%, sensor pH tanah mempunyai kesalahan 3.22%, sensor kelembaban tanah mempunyai kesalahan 1.46%. Uji fungsional menunjukkan sistem memberi respon menyalakan lampu growlight saat intensitas cahaya turun sampai 500 Lux dan menyalakan pompa saat kelembaban tanah turun di bawah 40% sesuai dengan setting titik threshold yang diberikan.
References
Adnantha, Y. A., & Kusuma, W. A. (2018). Implementasi wireless sensor network untuk otomatisasi suhu ruang dan kelembaban tanah pada greenhouse berbasis web server. Jurnal Online Infomatika, 3(1), 14-21. https://doi.org/10.15575/join.v3i1.169
Akbar, M. F. (2021). Pemanfaatan sensor MQ-135 sebagai monitoring kualitas udara pada aula gedung Fasilkom [Undergraduate thesis]. Universitas Sriwijaya. Retrieved from https://repository.unsri.ac.id/53925/1/RAMA_56401_09030581822042.pdf
Anwar, M. S. (2018). Sistem monitoring dan kontrol green house menggunakan Node-Red dengan protokol MQTT [Undergraduate thesis]. Fakultas Teknologi Industri, Universitas Unissula. Retrieved from http://repository.unissula.ac.id/id/eprint/11731
Arsyad, M. S. (2017). Implementasi konsep internet of things pada aplikasi virtual shield untuk Arduino Uno berbasis Android [Undergraduate thesis]. Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia. Retrieved from https://repository.uinjkt.ac.id/dspace/bitstream/123456789/66218/1/MUHAMMAD%20SAGGAF%20ARSYAD%20-%20FST.pdf
Astuti, F. Y., Setiani, Y., Widodo, S., & Nursyahid, A. (2021). Rancang bangun model monitoring dan pengendalian air dalam sistem smart building berbasis IoT. Jurnal Teknologi Terapan, 8(1), 1-8. https://doi.org/10.31884/jtt.v8i1.338
Pamungkas, Z. A. (2020). Perancangan prototype monitoring tempat parkir mobil berbasis Arduino pada Unikom [Undergraduate thesis]. Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia. Retrieved from http://elibrary.unikom.ac.id/id/eprint/3650
Prasetyo, A. D. (2018). Rancang bangun compact green house berbasis mikrokontroler [Undergraduate thesis]. Institut Bisnis dan Informatika, Surabaya, Indonesia. Retrieved from https://repository.dinamika.ac.id/id/eprint/3120/1/14410200041-2018-COMPLETE.pdf
Rasyid, A. N., Hamdani, D., & Setiawan, I. (2023). Rancang bangun smart greenhouse berbasis Arduino Uno. Ilmu Pembelajaran Fisika, 2(2), 125-132. https://doi.org/10.33369/ajipf.2.2.125-132
Ristian, U., Ruslianto, I., & Sari, K. (2022). Sistem monitoring smart greenhouse pada lahan terbatas berbasis Internet of Things (IoT). Jurnal Edukasi dan Penelitian Informatika, 8(1), 87-94. https://doi.org/10.26418/jp.v8i1.52770
Saleh, M., & Haryanti, M. (2017). Rancang bangun sistem keamanan rumah menggunakan relay. Jurnal Teknologi Elektro, 8(2), 87-94. Retrieved from https://publikasi.mercubuana.ac.id/index.php/jte/article/view/1601/
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fitri Yuni Astuti, Henri P. Uranus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
“Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website). The final published PDF should be used and bibliographic details that credit the publication in this journal should be included.”