IMOBILISASI KITINASE INTRASELULER Providencia stuartii DENGAN KALSIUM ALGINAT DAN APLIKASINYA DALAM PRODUKSI N-ASETILGLUKOSAMIN

Yuniwaty Halim

Abstract


Kitin, polimer linier yang terdiri dari unit ß-1,4-N-asetilglukosamin, ditemukan secara alami pada cangkang udang dan dapat diubah menjadi glukosamin, yang memiliki fungsi yang luas, khususnya di bidang kesehatan untuk mengobati penyakit pada sendi. N-asetilglukosamin (NAG), salah satu bentuk glukosamin, dapat dihasilkan melalui fermentasi kitin menggunakan mikroorganisme kitinolitik seperti kapang atau bakteri. Produksi kitinase oleh Providencia stuartii telah dipelajari, namun imobilisasi kitinase untuk produksi NAG belum secara langsung dievaluasi. Penelitian ini bertujuan untuk menentukan pengaruh rasio antara kitinase intraselular dan support menggunakan alginat dan pengaruh banyaknya siklus fermentasi terhadap aktivitas enzim kitinase intraseluler yang diimobilisasi dan produksi NAG dari kitin yang diperoleh dari cangkang udang Penaeus monodon. Rasio kitinase: support yang digunakan adalah 1:1, 1,5:1, dan 2:1. Rasio 2:1 menghasilkan aktivitas enzim tertinggi, yaitu sebesar 2,030 ± 0,0405 U/ml. produksi NAG tertinggi diperoleh dari siklus fermentasi pertama yang menghasilkan konsentrasi NAG sebesar 1347,7778 ± 50,1848 ppm. Kitinase intraseluler yang diimobilisasi dengan alginat dapat digunakan hingga 4 siklus fermentasi dengan aktivitas enzim yang dipertahankan adalah sebesar 66,91%.


Keywords


alginat; enzim; imobilisasi; kitinase; N-asetilglukosamin

Full Text:

PDF

References


Blandino, A., Macias, M., and Cantero, D. 2001. Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry 36 : 601-606. Dai, X.Y., Kong, L.M., Wang, X.L, Zhu, Q., Chen, K., and Zhou, T. 2018. Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads. Food Chemistry 253 : 185-193. Dwevedi, A. 2016. Enzyme Immobilization: Advances in Industry, Agriculture, Medicine, and the Environment. New Delhi : Springer International Publishing. Josephine, C. 2018. Uji indeks kitinolitik bakteri yang diisolasi dari kulit udang windu (Penaeus monodon). Teknologi Pangan, Tangerang, Indonesia : Universitas Pelita Harapan, Skripsi. Kandra, P., Challa, M.M., and Jyoti, H.K.P. 2011. Efficient use of shrimp waste: present and future trends. Applied Microbiology and Biotechnology 93 (1): 17-29. Karunya, S.K., Reetha, D., Saranraj, P., and Milton, D.J. 2011. Optimization and purification of chitinase produced by Bacillus subtilis and its antifungal activity against plant pathogens. International Journal of Pharmaceutical & Biological Archives 2(6) : 1680-1685. Kumar, S., Haq, I., Prakash, J., and Raj, A. 2017. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. International Journal of Biological Macromolecules 98 : 24-33. Lestari, P., Prihatiningsih, N., and Djatmiko, H.A. 2017. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B298. IOP Conference Series: Materials Science and Engineering 172. Liang, T.W., Yue-Yin, C., Po-Shen, P., and San-Lang, W. 2014. Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules 63 : 8-14. Miletic, N., Nastasovic, A., and Loos, K. 2012. Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresource Technology 115 : 126-135. Muzzarelli, R.A.A. 2013. Chitin. Amsterdam : Elsevier. Öztürk, B. 2001. Immobilization of Lipase from Candida rugosa on Hydrophobic and Hydrophilic Supports. Biotechnology and Bioengineering, İzmir, Turkey : İzmir Institute of Technology, Master Thesis. Rahmansyah, M. dan Sudiana, I.M. 2003. Optimasi analisis amilase dan glukanase yang diekstrak dari miselium Pleurotus ostreatus dengan asam 3,5 dinitrosalisilat. Berkala Penelitian Hayati 9: 7-12. Sadhya, C., Adapa, L. K., Nampoothiri, M., Binod, P., Szakacs, G., and Pandey A. 2004. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. Journal of Basic Microbiology 44 (1) : 49-58. Salman, S., Srimathi, S., Safina, G., Satoh, I, and Danielsson, B. Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor based FIA. Talanta 77 (2): 468–472. Sardesai, V. 2011. Introduction to Clinical Nutrition, Third Edition. Boca Raton : CRC Press. Takaya, N., Yamazaki, D., Horiuchi, H., Ohta, A., and Takagi, M. 1998. Intracellular chitinase gene from Rhizopus oligosporus: molecular cloning and characterization. Microbiology 144: 2647-2654. Taqieddin, E. and Amiji, M. 2004. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 25 (10): 1937-1945. Teja, E. 2018. Optimasi produksi N-Asetil-Glukosamin dari kulit udang windu menggunakan enzim kitinase intraseluler semi murni Providencia stuartii. Teknologi Pangan, Tangerang, Indonesia : Universitas Pelita Harapan, Skripsi. Torchilin, V.P. 2012. Immobilized Enzymes in Medicine. Berlin: Springer Science & Business Media. Viet, T.Q., Minh, N.P., and Dao, D.T.A. 2013. Immobilization of cellulase enzyme in calcium alginate gel and its immobilization stability. American Journal of Research Communication 1 (12) : 254-267. Wang, N.S. 2009. Enzyme Entrapment in Alginate Gel. Department of Chemical & Biomolecular Engineering, Maryland, USA: University of Maryland, Laboratory Protocol. Won, K., Kim, S., Kim, K. J., Park, H. W. and Moon, S.J. 2005. Optimization of lipase entrapment in Ca-Alginate gel beads. Process Biochemistry 40(6) : 2149-2154.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Yuniwaty Halim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

favicon Faculty of Science and Technology | Universitas Pelita Harapan | Lippo Karawaci, Tangerang, Indonesia, 15811 | Tel +62 21 5466057 | Fax +62 21 5461055