Biodegradasi Fenol oleh Acinetobacter sp. IrC2 dan Cupriavidus sp. IrC4
Schlagworte:
Biodegradasi, Fenol, Natrium Salisilat, Acinetobacter, CupriavidusAbstract
Fenol adalah senyawa organik beracun yang berbahaya bagi manusia, mamalia, dan mengganggu lingkungan perairan terutama organisme air tingkat tinggi. Metode biodegradasi menggunakan mikroorganisme termasuk bakteri untuk mendegradasi bahan kimia berbahaya dan mendetoksifikasi air limbah adalah salah satu metode yang efektif dan efisien. Acinetobacter sp. IrC2 dan Cupriavidus sp. IrC4 telah diisolasi pada penelitian terdahulu dan pada penelitian ini diuji kemampuan tumbuh dalam medium yang mengandung fenol dan natrium salisilat konsentrasi tinggi dan kemudian diuji untuk biodegradasi fenol dalam medium minimal. Acinetobacter sp. IrC2 adalah bakteri Gram negatif. Bakteri ini sebagian besar menunjukkan morfologi coccobacillary pada agar nonselektif. Bakteri ini dapat mendegradasi fenol hingga 25,57% selama 48 jam inkubasi. Acinetobacter sp. IrC2 dapat tumbuh baik dalam medium LB 1% yang mengandung konsentrasi fenol hingga 1000 ppm atau konsentrasi natrium salisilat hingga 1200 ppm. Acinetobacter sp. IrC2 menunjukkan sedikit pertumbuhan dalam medium garam minimal dengan fenol 100 ppm sebagai sumber karbon tunggal dalam 24 jam inkubasi. Cupriavidus sp. IrC4 ini tidak dapat tumbuh dalam medium minimal yang mengandung konsentrasi fenol 100 ppm. Uji kemampuan tumbuh Cupriavidus sp. IrC4 dalam medium LB 1% yang mengandung fenol menunjukkan bahwa bakteri ini dapat tumbuh baik pada konsentrasi fenol 200 ppm - 1200 ppm. Pada konsentrasi fenol di atas 1200 ppm, bakteri ini menunjukkan penurunan pertumbuhan yang cukup signifikan. Uji kemampuan tumbuh Cupriavidus sp. IrC4 dalam medium LB 1% yang mengandung natrium salisilat menunjukkan bahwa bakteri ini dapat tumbuh baik pada konsentrasi natrium salisilat 200 ppm - 1800 ppm, dengan kecenderungan semakin tinggi konsentrasi natrium salisilat, maka pertumbuhan bakteri semakin menurun.
Phenol is a toxic chemical to human, mammals, and it causes serious impact into water environments and could be deadly in high concentration to high-level aquatic organisms. Biodegradation method by using microorganisms such as bacteria to detoxify hazardous organic chemicals was an effective and efficient method. Acinetobacter sp. IrC2 and Cupriavidus sp. IrC4, were isolated on previous study, then be examined for grow ability in medium contain high-concentration phenol or sodium salicylic and determined phenol biodegradation percentage by Acinetobacter sp. IrC2 after incubation. Acinetobacter sp. IrC2 is Gram-negative with coccobacillary morphology on non-selective solid medium. This bacterium could degrade phenol in medium up to 25.57% for 48 hours incubation. Acinetobacter sp. IrC2 shows proper growth in 1% Luria Bertani medium contained phenol 1000 ppm or sodium salicylic 1200 ppm. Acinetobacter sp. IrC2 shows slightly growth in minimum salt medium contain 100 ppm of phenol as sole carbon source after 24 hours incubation. Cupriavidus sp. IrC4 is unable to show growth in the minimum salt medium contains 100 ppm of phenol, but it can grow in 1% LB rich-nutrient medium contains 200 - 1200 ppm of phenol. When the concentration of phenol was raised above 1200 ppm, the bacteria could not grow. The growth ability was showed by Cupriavidus sp. IrC4 in 1% LB rich-nutrient medium contains 200 - 1800 ppm of sodium salicylic, but with tendency to decrease as the concentration increased.
Literaturhinweise
Haddadi, A., & Shavandi, M. (2013). Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. International Biodeterioration and Biodegradation, 85, 29-34.
https://doi.org/10.1016/j.ibiod.2013.06.005
Irawati, W., Jan, A., Parhusip, N., & Sopiah, R. N. (2015). Heavy Metals Biosorption by Copper Resistant Bacteria of. Microbiology Indonesia, 9(4).
https://doi.org/10.5454/mi.9.4.4
Irawati, W., & Yuwono, T. (2015). The potency of copper-resistant bacteria. The 3rd International Conference on Biological Science 2013, 2, 375-381.
https://doi.org/10.18502/kls.v2i1.179
Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., & Liu, S. (2016). Biodegradation of Phenol by Bacteria Strain Acinetobacter Calcoaceticus PA Isolated from Phenolic Wastewater.
https://doi.org/10.3390/ijerph13030300
Nair, C. I., Jayachandran, K., & Shashidhar, S. (2008). Biodegradation of phenol. African Journal of Biotechnology, 7(25), 4951-4958. https://doi.org/http://dx.doi.org/10.5897/AJB08.087
Olukunle, O. F., Babajide, O., & Boboye, B. (2015). Effects of Temperature and pH on the Activities of Catechol 2,3-dioxygenase Obtained from Crude Oil Contaminated Soil in Ilaje, Ondo State, Nigeria. The Open Microbiology Journal, 9, 84-90.
https://doi.org/10.2174/1874285801509010084
Rubeena, S., & Preetha, B. (2018). Biodegradation of Phenol : A Review. 8(6), 51-55. https://doi.org/10.9790/9622-0806015155
Tahya, C. Y., Irawati, W., & Purba, F. J. (2019). Phenol Biodegradation and Catechol 2,3-Dioxygenase Gene Sequencing of Bacillus cereus IrC2 isolated from Rungkut Indonesia. Jurnal Kimia Terapan Indonesia, 21(1), 23-30.
https://doi.org/10.14203/jkti.v21i1.415
Tavakoli, A., & Hamzah, A. (2017). Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia. Biological Journal of Microorganism 5 Th Year, 5(20), 71-80.
Wei, Y. H., Chen, W. C., Chang, S. M., & Chen, B. Y. (2010). Exploring kinetics of phenol biodegradation by Cupriavidus taiwanesis 187. International Journal of Molecular Sciences, 11(12), 5065-5076.
https://doi.org/10.3390/ijms11125065
WHO. (1994). Phenol Health and Safety Guide. International Programme on Chemical Safety (IPCS), 36.
https://doi.org/10.1108/f.2001.06919gab.002
Downloads
Veröffentlicht
Ausgabe
Rubrik
Lizenz
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website). The final published PDF should be used and bibliographic details that credit the publication in this journal should be included.