MAPPING GENERATIVE AI'S ETHICAL ISSUES IN HIGHER EDUCATION: A FELT-GUIDED SYSTEMATIC REVIEW [PEMETAAN ISU ETIKA GENERATIVE AI DI PENDIDIKAN TINGGI: TINJAUAN SISTEMATIS BERPANDUAN FELT]
DOI:
https://doi.org/10.19166/pji.v21i2.10020Trefwoorden:
Generative AI, Ethical Challenges, Higher Education, Systematic Literature Review, Ethical Frameworks, tantangan etika, tinjauan literatur, Perguruan Tinggi, Tinjauan Literatur Sistematis (SLR), kerangka kerja etikaSamenvatting
The pervasive integration of generative AI (GenAI) into higher education presents transformative opportunities alongside complex ethical challenges that necessitate urgent scholarly attention. This study conducts a systematic literature review (SLR) following the rigorous Kitchenham protocol, analyzing 27 peer-reviewed articles published between 2023 and 2025 to comprehensively identify these ethical issues and map them against the ALT Framework for Ethical Learning Technologies (FELT). The SLR revealed seven prominent ethical concerns: (1) academic integrity and plagiarism, highlighting issues of unauthorized assistance and false authorship; (2) bias and fairness, manifested through algorithmic and linguistic biases; (3) data privacy and security, concerning unauthorized access and re-identification risks; (4) impact on critical thinking and learning outcomes, fostering over-reliance; (5) authorship, intellectual property, and copyright ambiguities; (6) misinformation, hallucinations, and deepfakes, eroding trust; and (7) broader environmental and labor impacts. Crucially, the mapping to FELT demonstrated that these issues collectively challenge institutional accountability, necessitate responsible learning paradigms, demand greater transparency in AI operations, and underscore the imperative for care towards individuals and societal well-being. Findings indicate a nascent and fragmented institutional response globally, driven by varied stakeholder perspectives. This research recommends a multi-faceted approach: fostering comprehensive AI literacy, adopting human-centered design, developing robust and adaptive policies, ensuring system transparency and accountability, strengthening data governance, advocating for ethical AI design, and promoting interdisciplinary collaboration. This study equips higher education stakeholders to navigate GenAI's ethical landscape and uphold core educational values by synthesizing current ethical dilemmas and offering a FELT-guided framework for responsible integration.
Abstrak Bahasa Indonesia
Integrasi kecerdasan buatan generatif (GenAI) yang meluas ke pendidikan tinggi menghadirkan peluang transformatif sekaligus tantangan etika yang kompleks dan memerlukan perhatian akademis yang mendesak. Studi ini melakukan tinjauan literatur sistematis (SLR) mengikuti protokol Kitchenham yang ketat, menganalisis 27 artikel peer-reviewed yang diterbitkan antara tahun 2023 dan 2025 untuk secara komprehensif mengidentifikasi isu-isu etika ini dan memetakannya terhadap Kerangka Kerja ALT untuk Teknologi Pembelajaran Etis (FELT). SLR ini mengungkapkan tujuh kekhawatiran etika yang menonjol: (1) integritas akademik dan plagiarisme, menyoroti isu-isu bantuan tidak sah dan kepengarangan palsu; (2) bias dan keadilan, termanifestasi melalui bias algoritmik dan linguistik; (3) privasi dan keamanan data, menyangkut akses tidak sah dan risiko re-identifikasi; (4) dampak pada pemikiran kritis dan hasil pembelajaran, mendorong ketergantungan berlebihan; (5) ambiguitas kepengarangan, kekayaan intelektual, dan hak cipta; (6) misinformasi, halusinasi, dan deepfake, mengikis kepercayaan; dan (7) dampak lingkungan dan tenaga kerja yang lebih luas. Secara krusial, pemetaan ke FELT menunjukkan bahwa isu-isu ini secara kolektif menantang akuntabilitas institusional, menuntut paradigma pembelajaran yang bertanggung jawab, membutuhkan transparansi yang lebih besar dalam operasi AI, dan menggarisbawahi keharusan untuk peduli terhadap individu dan kesejahteraan masyarakat yang lebih luas. Temuan mengindikasikan respons institusional yang masih baru dan terfragmentasi secara global, didorong oleh beragam perspektif pemangku kepentingan. Penelitian ini merekomendasikan pendekatan multi-aspek: membina literasi AI yang komprehensif, mengadopsi desain yang berpusat pada manusia, mengembangkan kebijakan yang kuat dan adaptif, memastikan transparansi dan akuntabilitas sistem, memperkuat tata kelola data, mengadvokasi desain AI yang etis, dan mempromosikan kolaborasi interdisipliner. Dengan menyintesis dilema etika saat ini dan menawarkan kerangka kerja berbasis FELT untuk integrasi yang bertanggung jawab, studi ini membekali pemangku kepentingan pendidikan tinggi untuk menavigasi lanskap etika GenAI dan menjunjung tinggi nilai-nilai inti pendidikan.
Referenties
2024 EDUCAUSE Action Plan: AI Policies and Guidelines. (2024, May). https://library.educause.edu/resources/2024/5/2024-educause-action-plan-ai-policies-and-guidelines
ALT’s Framework for Ethical Learning Technology (EdTechEthics Part 1). (2022, March). https://blogs.ubc.ca/chendricks/2022/03/27/alt-framework-for-ethical-learning-technology/
Ardito, C. G. (2024). Generative AI detection in higher education assessments. New Directions for Teaching and Learning. Scopus. https://doi.org/10.1002/tl.20624
Barus, O. P., Hidayanto, A. N., Handri, E. Y., Sensuse, D. I., & Yaiprasert, C. (2025). Shaping generative AI governance in higher education: Insights from student perception. International Journal of Educational Research Open, 8, 100452. https://doi.org/10.1016/j.ijedro.2025.100452
Cacho, R. M. (2024). Integrating Generative AI in University Teaching and Learning: A Model for Balanced Guidelines. Online Learning Journal, 28(3), 55–81. Scopus. https://doi.org/10.24059/olj.v28i3.4508
Carrera-Rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022). How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX, 9, 101895. https://doi.org/10.1016/j.mex.2022.101895
Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1). Scopus. https://doi.org/10.1186/s41239-023-00408-3
Chan, C. K. Y. (2024). Students’ perceptions of ‘AI-giarism’: Investigating changes in understandings of academic misconduct. In Education and Information Technologies. https://doi.org/10.1007/s10639-024-13151-7
Currie, G., & Barry, K. (2023). ChatGPT in Nuclear Medicine Education. In Journal of Nuclear Medicine Technology (Vol. 51, Issue 3, pp. 247–254). https://doi.org/10.2967/jnmt.123.265844
Dabis, A., & Csáki, C. (2024). AI and ethics: Investigating the first policy responses of higher education institutions to the challenge of generative AI. Humanities and Social Sciences Communications, 11(1). Scopus. https://doi.org/10.1057/s41599-024-03526-z
Dotan, R., Parker, L. S., & Radzilowicz, J. (2024). Responsible Adoption of Generative AI in Higher Education: Developing a “Points to Consider” Approach Based on Faculty Perspectives. In 2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT 2024 (pp. 2033–2046). https://doi.org/10.1145/3630106.3659023
Driessens, O., & Pischetola, M. (2024). Danish university policies on generative AI Problems, assumptions and sustainability blind spots. MedieKultur, 40(76), 31–52. Scopus. https://doi.org/10.7146/mk.v40i76.143595
FELT Resources. (2023, February). https://www.alt.ac.uk/about-alt/what-we-do/alts-ethical-framework-learning-technology/felt-resources
Godwin‐Jones, R. (2024). Distributed agency in second language learning and teaching through generative AI. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2403.20216
Hammond, K. M., Lucas, P., Hassouna, A., & Brown, S. (2023). A Wolf in Sheep’s Clothing? Critical Discourse Analysis of Five Online Automated Paraphrasing Sites. In Journal of University Teaching and Learning Practice (Vol. 20, Issue 7). https://doi.org/10.53761/1.20.7.08
Hargreaves, S. (2023). ‘Words are Flowing Out Like Endless Rain Into a Paper Cup’: ChatGPT & Law School Assessments. In Legal Education Review (Vol. 33, Issue 1, pp. 69–105). https://doi.org/10.53300/001c.83297
Henke, J. (2024). Navigating the AI era: University communication strategies and perspectives on generative AI tools. Journal of Science Communication, 23(3). Scopus. https://doi.org/10.22323/2.23030205
Issa, T., & Hall, M. (2024). A teamwork framework for preventing breaches of academic integrity and improving students’ collaborative skills in the AI era. In Heliyon (Vol. 10, Issue 19). https://doi.org/10.1016/j.heliyon.2024.e38759
Jin, Y., Yan, L., Echeverria, V., Gašević, D., & Martinez-Maldonado, R. (2025). Generative AI in higher education: A global perspective of institutional adoption policies and guidelines. In Computers and Education: Artificial Intelligence (Vol. 8). https://doi.org/10.1016/j.caeai.2024.100348
Katsamakas, E., Pavlov, O. V., & Saklad, R. (2024). Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach. Sustainability (Switzerland), 16(14). Scopus. https://doi.org/10.3390/su16146118
Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology, 55(12), 2049–2075. https://doi.org/10.1016/j.infsof.2013.07.010
Kolade, O., Owoseni, A., & Egbetokun, A. (2024). Is AI changing learning and assessment as we know it? Evidence from a ChatGPT experiment and a conceptual framework. Heliyon, 10(4), e25953. https://doi.org/10.1016/j.heliyon.2024.e25953
Licht, K. de F. (2024). Generative Artificial Intelligence in Higher Education: Why the “Banning Approach” to Student use is Sometimes Morally Justified. Philosophy & Technology, 37(3). https://doi.org/10.1007/s13347-024-00799-9
Lindsay, E., Johri, A., & Bjerva, J. (2023). A Framework for Responsible Development of Automated Student Feedback with Generative AI. In arXiv (Cornell University). Cornell University. https://arxiv.org/abs/2308.15334
Long, H. A., French, D. P., & Brooks, J. M. (2020). Optimising the value of the critical appraisal skills programme (CASP) tool for quality appraisal in qualitative evidence synthesis. Research Methods in Medicine & Health Sciences, 1(1), 31–42. https://doi.org/10.1177/2632084320947559
Mäntymäki, M., Minkkinen, M., Birkstedt, T., & Viljanen, M. (2022). Putting AI Ethics into Practice: The Hourglass Model of Organizational AI Governance. arXiv (Cornell University). https://doi.org/10.48550/arXiv.2206.00335
Moore, S., & Lookadoo, K. (2024). Communicating Clear Guidance: Advice for Generative AI Policy Development in Higher Education. Business and Professional Communication Quarterly. Scopus. https://doi.org/10.1177/23294906241254786
New resources for ALT’s Framework for Ethical Learning Technology. (2023, February). https://www.alt.ac.uk/news/all_news/new-resources-alts-framework-ethical-learning-technology
Ogunleye, B., Zakariyyah, K. I., Ajao, O., Olayinka, O., & Sharma, H. (2024). Higher education assessment practice in the era of generative AI tools. In Journal of Applied Learning and Teaching (Vol. 7, Issue 1, pp. 46–56). https://doi.org/10.37074/jalt.2024.7.1.28
Olla, P., Elliott, L., Abumeeiz, M., Mihelich, K., & Olson, J. (2024). Promptology: Enhancing Human–AI Interaction in Large Language Models. In Information (Switzerland) (Vol. 15, Issue 10). https://doi.org/10.3390/info15100634
Pérez‐Jorge, D., Olmos-Raya, E., Contreras, A. I. G., & Pérez, I. P. (2025). Technologies applied to education in the learning of English as a second language. Frontiers in Education, 10. https://doi.org/10.3389/feduc.2025.1481708
Ruiz-Rojas, L. I., Salvador-Ullauri, L., & Acosta-Vargas, P. (2024). Collaborative Working and Critical Thinking: Adoption of Generative Artificial Intelligence Tools in Higher Education. In Sustainability (Switzerland) (Vol. 16, Issue 13). https://doi.org/10.3390/su16135367
Suleymenova, K., Dawood, M., & Psyllou, M. (2024). Essays in economics in ICU: Resuscitate or pull the plug? In International Review of Economics Education (Vol. 45). https://doi.org/10.1016/j.iree.2024.100284
Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: Key problems and solutions. AI & Society, 37(1), 215–230. https://doi.org/10.1007/s00146-021-01154-8
Walczak, K., & Cellary, W. (2023). Challenges for higher education in the era of widespread access to Generative AI. Economics and Business Review, 9(2), 71–100. Scopus. https://doi.org/10.18559/ebr.2023.2.743
Yusuf, A., Pervin, N., & Román-González, M. (2024). Generative AI and the future of higher education: A threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21(1). Scopus. https://doi.org/10.1186/s41239-024-00453-6
##submission.downloads##
Gepubliceerd
Nummer
Sectie
Licentie
Copyright (c) 2025 okky barus, Achmad Nizar Hidayanto, Imairi Eitiveni

Dit werk wordt verdeeld onder een Naamsvermelding-GelijkDelen 4.0 Internationaal licentie.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website). The final published PDF should be used and bibliographic details that credit the publication in this journal should be included.