THE INFLUENCE OF E-COMMERCE ADOPTION AMONG GENERATION Z DURING THE COVID-19 PANDEMIC

Συγγραφείς

  • Zilaela Yasin President University
  • Genoveva Genoveva President University
  • Filda Rahmiati President University

DOI:

https://doi.org/10.19166/imj.v4i1.9496

Λέξεις-κλειδιά:

E-commerce, UTAUT, COVID-19, Performance Expectancy, Effort Expectancy

Περίληψη

At the beginning of 2020, Indonesia was fighting a virus that shocked the world, namely COVID-19. Every day the spread of the virus continues to increase. So that the government applies various ways so that the virus does not spread quickly, the ways the government is doing include social distancing, health protocols, working from home, and self-isolation. With a situation like this, some sectors are up for improvement such as online services, especially e-commerce. E-commerce is an online shopping platform that can meet our needs when we are not allowed to leave the house if there is nothing important. This study aims to obtain a significant variable regarding the acceptance of server-based e-commerce users in Indonesia, especially for Generation Z by adopting the UTAUT model and adding one mediating variable, namely Trust. This study uses quantitative research by distributing online questionnaires with 30 questions, taking a sample of 237 respondents, and using SmartPLS 3.3.3 (Partial Least Square-Structural Equation Model). The results of this study, that of the seven hypotheses proposed, two hypotheses were declared non-significant influence (performance expectancy to trust and performance expectancy to behavioural intention to use), while the other five hypotheses were stated positive significant influence and accepted.

Αναφορές

Allaudin, H. (2024, January 26). Peran internet dalam mengembangkan sebuah bisnis. Cyberplus. https://www.cyberplus.net.id/peran-internet-dalam-mengembangkan-sebuah-bisnis/

BPS. (2017). Berapa jumlah penduduk Indonesia?. Databoks. https://databoks.katadata.co.id/datapublish/2018/01/12/berapa-jumlah-penduduk-indonesia

Cherry, D. S., & Cairns, J. (1982). Biological monitoring part V-preference and avoidance studies. Water Research, 16(3), 263–301. https://doi.org/10.1016/0043-1354(82)90189-0

Christiono, D. I., & Brahmana, R. K. M. R. (2018). Analisis pengaruh performance expectancy dan effort expectancy terhadap behavioral intention pada online marketplace. Agora, 6(2), 1–6.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. http://dx.doi.org/10.1287/mnsc.35.8.982

Fabius, V., Kohli, S., Timelin, B., & Veranen, S. M. (2020). How COVID-19 is changing consumer behavior--now and forever. McKinsey & Company. https://www.mckinsey.com/industries/retail/our-insights/how-covid-19-is-changing-consumer-behavior-now-and-forever

Fatoni, S. N., Susilawati, C., Yulianti, L., & Iskandar. (2019). Dampak COVID-19 terhadap perilaku konsumen dalam penggunaan e-wallet di Indonesia. Journal of Chemical Information and Modeling, 53(9), 1689–1699.

Gaskin, J., Godfrey, S., & Vance, A. (2018). Successful system-use: It’s not just who you are, but what you do. AIS Transactions on Human-Computer Interaction, 10(2), 57–81. https://doi.org/10.17705/1thci.00104

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

Herman, H. (2020). APJII: Pengguna internet di Indonesia capai 196,7 juta. Berita Satu. https://www.beritasatu.com/news/696577/apjii-pengguna-internet-di-indonesia-capai-1967-juta

Hutauruk, M. R. (2020). The effect of pandemic COVID-19 on factors which determine consumer behavior to buy staple goods in Samarinda. Jurnal Riset Inossa, 2(1), 1–15.

Irwan, I., & Adam, K. (2015). Metode Partial Least Square (PLS) dan terapannya (studi kasus: Analisis kepuasan pelanggan terhadap layanan PDAM unit Camming Kab. Bone). Teknosains, 9(1), 53–68. https://doi.org/10.24252/teknosains.v9i1.1856

Lestari, A. N. D. (2020). Analisa pengaruh aplikasi e-commerce klikindomaret terhadap penerimaan pengguna di Kabupaten Jember menggunakan Technology Acceptance Model (TAM) [Undergraduate Theses, Universitas Jember]. Repository Universitas Jember. http://repository.unej.ac.id/handle/123456789/103364

Moerti, H., Astuti, E, S., & Suyadi, I. (2015). Analisis pengaruh variable –variable pada model UTAUT yang dimodifikasi terhadap penggunaan website e commerce. Jurnal Spirit : STMIK Yadika Journal of Computing and Cybernetic System, 7(1), 36–47. http://dx.doi.org/10.53567/spirit.v7i1.26

Mubarok, M. Z., Kusyanti, A., & Aryadita, H. (2018). Analisis faktor-faktor yang memengaruhi kepercayaan dan resiko pengguna dalam bertransaksi pada e-commerce XYZ menggunakan UTAUT ( Unified Theory Of Acceptance And Use Of Technology). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(9), 3050–3057. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2530

Mustaqim, R. N., Kusyanti, A., & Aryadita, H. (2018). Analisis faktor-faktor yang memengaruhi niat penggunaan e-commerce XYZ menggunakan model UTAUT (Unified Theory Acceptance and Use Of Technology). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(7), 2584–2593. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1653

Pertiwi, W. K., & Yusuf, O. (2020, November 24). Jenis-jenis layanan online ini tumbuh pesat di Indonesia saat pandemi. Kompas.com. https://tekno.kompas.com/read/2020/11/24/17070027/jenis-jenis-layanan-online-ini-tumbuh-pesat-di-indonesia-saat-pandemi?page=all

Putra, Y. F., & Baridwan, Z. (2020). Analysis of factors influencing user intention in using OVO application. Jurnal Ilmiah Mahasiswa FEB Brawijaya, 8(1), 1–12.

Putri, R. A., & Jumhur, H. M. (2019). Peminat aplikasi blibli.com dengan menggunakan model Unified Theory Of Acceptance And Use Of Technology (UTAUT). Jurnal Riset Bisnis dan Manajemen, 12(2), 16–23. https://doi.org/10.23969/jrbm.v12i1.762

Romla, S., & Ratnawati, A. (2018). Keputusan pembelian e-commerce melalui kemudahan penggunaan, kualitas informasi dan kualitas interaksi layanan web. Jurnal Ekonomi dan Bisnis, 19(1), 59–70. https://doi.org/10.30659/ekobis.19.1.59-70

Silalahi, R. Y. B., & Purba, M. P. (2020). Tren e-commerce selama pandemi COVID 19 di Indonesia. Jurnal Rekaman, 4(3), 527–531. https://ojs.jurnalrekaman.com/index.php/rekaman/article/view/83

Sugiyono. (2017). Metode penelitian kuantitatif, kualitatif, dan kombinasi (mixed methods). Indonesia, Bandung: Alvabeta.

Tarhini, A., El-Masri, M., Ali, M., & Serrano, A. (2016). Extending the UTAUT model to understand the customers’ acceptance and use of internet banking in lebanon a structural equation modeling approach. Information Technology and People, 29(4), 830–849. https://doi.org/10.1108/ITP-02-2014-0034

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. Management Information Systems Research Center, 36(1), 157–178. http://dx.doi.org/10.2307/41410412

Widyanto, H. A., & Kusumawardani, K. A. (2020). Predicting the behavioral intention to use mobile payment in an emerging country: The role of trust as a mediating variable. International Conference on Family Business and Entrepreneurship, 327–336. http://dx.doi.org/10.33021/icfbe.v1i1.1370

Wong, K. K. K. K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24(1), 1–32.

Λήψεις

Δημοσιευμένα

2024-04-15

Τεύχος

Ενότητα

Articles