Factors Influencing Customer Performance (Case study on tokopedia.com)
关键词:
AI Assimilation, Organization Customer Agility, Customer Experience, Customer Relationship Quality, Customer Performance摘要
This research aims to test the influence of variables 1) AI assimilation with organizational and customer agility; 2) AI
assimilation with customer relationship quality; 3) AI assimilation with customer experience; 4) Organization and customer agility with customer relationship quality; 5) Organization and customer agility with customer experience; 6) Customer experience with customer relationship quality; 7) Customer relationship quality with customer performance for Tokopedia customers in Jakarta, Bogor, Depok, Tangerang and Bekasi. This research uses a quantitative type of research with data collection tools in the form of questionnaires measured using a Likert scale. The data analysis method was carried out using Structural Equation Modeling (SEM) based on Partial Least Squares (PLS) with the help of SmartPLS version 4 software. Based on the results of data analysis, it shows that there is a significant correlation between AI assimilation and organizational and customer agility, AI assimilation with customer experience, organization and customer agility with customer relationship quality, organization and customer agility with customer experience, customer experience with customer relationship quality, and customer relationship quality with customer performance. And there is no correlation between AI assimilation and customer relationship quality.
参考
Al-Rawahna, A. S. M., & Hadid, A. Y. B. A. (2020). A propose model optimal supply chain distribution network for farmer industrial. International Journal of Informatics and Information Systems, 3(2), 43–53. https://doi.org/10.47738/ijiis.v3i2.62
Alwreikat, A. A. M., & Rjoub, H. (2020). Impact of mobile advertising wearout on consumer irritation, perceived intrusiveness, engagement and loyalty: A partial least squares structural equation modelling analysis. South African Journal of Business Management, 51(1), 1–11. https://doi.org/10.4102/SAJBM.V51I1.2046
Asih, E. M. (2024). Analisis pada shopee sebagai e-commerce terpopuler di Indonesia. Jurnal Ekonomi Bisnis Antartika, 2(1), 73–79. https://doi.org/10.70052/jeba.v2i1.299
Boulding, W., Staelin, R., Ehret, M., & Johnston, W. J. (2005). A customer relationship management roadmap: What is known, potential pitfalls, and where to go. Journal of Marketing, 69, 155–166. https://www.researchgate.net/publication/313564111
Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219. https://doi.org/10.1016/j.indmarman.2021.07.013
Chaudhuri, A. B. (2020). Flowchart and algorithm basics: The art of programming (berilustrasi). Mercury Learning and Information
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a monte carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217. https://doi.org/10.1287/isre.14.2.189.16018
Crosby, L. A., Evans, K. R., & Cowles, D. (1990). Relationship quality in services selling: An interpersonal influence perspective. Journal of Marketing, 54(3), 68–81. https://doi.org/10.2307/1251817
Da Costa, R. L., Gupta, V., Gonçalves, R., Dias, Á., Pereira, L., & Gupta, C. (2022). Artificial intelligence and cognitive computing in companies in portugal: An outcome of partial least squares—structural equations modeling. Mathematics, 10(22), 18–31. https://doi.org/10.3390/math10224358
Dick, A. S., & Basu, K. (1994). Customer loyalty: Toward an integrated conceptual framework. Journal of the Academy of Marketing Science, 22(2), 99–113. https://doi.org/10.1177/0092070394222001
Ghozali, H. I. M. (2021). Aplikasi analisis multivariate dengan program IBM SPSS 26 (10th ed.). Badan Penerbit Universitas Dipenogoro.
Hair, J. F., Hult, G. T. M. Hult., Ringle, C. M., Sarstedt, Marko., Danks, N. P., & Ray, S. (2021). Classroom companion: Business partial least squares structural equation modeling (PLS-SEM) using R AAWorkbook. Springer.
Hanafi, M., Widiyanto, A., Fahrizal R. H., & Rahardian, A. M. (2021). Implementation of knowledge management in different industries. International Journal of Informatics and Information System, 4(2), 103–111.
Hariguna, T., & Ruangkanjanases, A. (2024). Assessing the impact of artificial intelligence on customer performance: A quantitative study using partial least squares methodology. Data Science and Management, 7(3), 155–163. https://doi.org/10.1016/j.dsm.2024.01.001
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance- based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
Irmawati, D. (2011). Pemanfaatan e-commerce dalam dunia bisnis (7th ed.). Palembang: Politeknik Negeri Sriwijaya. https://orasibisnis.files.wordpress.com/2012/05/dewiimarwati_pemanfaatan-e-commerce-dalam-dunia- bisnis.pdf.
Lee, O., Sambamurthy, V., Lim, K. H., & Wei, K. K. (2015). How does it ambidexterity impact organizational agility?. Information Systems Research, 26(2), 398–417. https://doi.org/10.1287/isre.2015.0577
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the Ccustomer Journey. Journal of Marketing, 80(6), 69–96. https://doi.org/10.1509/jm.15.0420
Mayatopani, H. (2021). Implementation of ANN and GARCH for stock price forecasting. Journal of Applied Data Sciences, 2(4), 109–134. https://doi.org/10.47738/jads.v2i4.41
Meyer, C., & Andre, S. (2007). Understanding customer experience. Harvard Business Review, 85(2), 117–126.
Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. Information & Management, 57(1), 1–12.
Nisa, M. (2021). Moderating structural equation modeling dengan partial least square pada pemodelan penerimaan dan penggunaan dompet digital di kota Semarang. 10(1), 66–75.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469. https://doi.org/10.2307/3150499
Panagou, E. Z., Mohareb, F. R., Argyri, A. A., Bessant, C. M., & Nychas, G. J. E. (2011). A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints. Food Microbiology, 28(4), 782–790. https://doi.org/10.1016/j.fm.2010.05.014
Paramita, A. S. (2022). Implementation of the K-Nearest Neighbor Algorithm for the classification of student thesis subjects. Journal of Applied Data Sciences, 3(3), 128–136. https://doi.org/10.47738/jads.v3i3.66
Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index. Journal of Service Research, 18(1), 59–74. https://doi.org/10.1177/1094670514539730
Purvis, R. L., Sambamurthy, V., & Zmud, R. W. (2001). The assimilation of knowledge platforms in organizations: An empirical investigation. Organization Science, 12(2), 117–135. https://doi.org/10.1287/orsc.12.2.117.10115
Sambamurthy, V., Bharadwaj, A., & Grover, V. (2003). Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 27(2), 237–263. https://doi.org/10.2307/30036530
Sarstedt, M. (2008). A review of recent approaches for capturing heterogeneity in partial least squares path modelling. Journal of Modelling in Management, 3(2), 140–161. https://doi.org/10.1108/17465660810890126
Sholihin, M. R., Arianto, W., & Khasanah, D. F. (2018). Keunggulan sosial media dalam perkembangan ekonomi kreatif era digital di Indonesia. Prosiding Ekonomi Kreatif Di Era Digital, 1(1), 149–160. http://jurnal.unmuhjember.ac.id/index.php/PEKED/article/download/1286/1044
Sugiyono. (2017). Metode penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.
Sugiyono. (2019). Metode penelitian kuantitatif kualitatif dan R&D (1st ed.). Alfabeta.
Tallon, P. P. (2011). Competing perspectives on the link between strategic information technology alignment and organizational agility: Insights from a mediation model. Pinsonneault, 35(2), 463–486.
Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer experience creation: Determinants, dynamics and management Strategies. Journal of Retailing, 85(1), 31–41. https://doi.org/10.1016/j.jretai.2008.11.001
Wamba, S. F. (2022). Impact of artificial intelligence assimilation on firm performance: The mediating effects of organizational agility and customer agility. International Journal of Information Management, 67, 31–41. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2022.102544
Wijaya, A. (2019). Metode penelitian menggunakan smart PLS 03 (1st ed.). Yogyakarta : Innosain.
Wirtz, J., Ambtman, A. D., Bloemer, J., Horváth, C., Ramaseshan, B., Van De Klundert, J., Canli, Z. G., & Kandampully, J. (2013). Managing brands and customer engagement in online brand communities. Journal of Service Management, 24(3), 223–244. https://doi.org/10.1108/09564231311326978
Yunia, A., Kaniawulan, I., & Singasatia, H. D. (2022). Analisis kesuksesan aplikasi E-commerce Tokopedia menggunakan model Delon and Mclean. Jurnal Informatika Teknologi Dan Sains, 4(3), 207–214. https://doi.org/10.51401/jinteks.v4i3.1947
Zainah, S., Hamzah, M. L., Rozanda, N. E., & Salisah, F. N. (2023). Analisis kualitas layanan E-commerce shopee menggunakan metode E-servqual dan Kano. Jurnal Teknik Informatika dan Sistem Informasi, 10(2), 316–328.
Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X., & Lu, H. (2010). Application of artificial neural network (ANN) and partial least-squares regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal analysis and red, green, and blue (RGB) intensity values. Journal of Agricultural and Food Chemistry, 59(2), 592–600. https://doi.org/10.1021/jf1032476