ANALISIS NON-PARAMETRIK TERHADAP FAKTOR-FAKTOR YANG MEMENGARUHI DETAK JANTUNG MAKSIMUM DI DALAM INDUSTRI KESEHATAN [NON-PARAMETRIC ANALYSIS OF FACTORS INFLUENCING MAXIMUM HEART RATE IN THE HEALTHCARE SECTOR]
Abstract
This study aims to analyze factors that influence maximum heart rate using a non-parametric statistical analysis approach, which is flexible in analyzing data with unknown or non-normal distributions. Factors analyzed include resting electrocardiogram (ECG) examination results, type of chest pain, and blood pressure. Respondents were classified based on these factors to facilitate analysis. Methods used in this study included the Expanded Median Test (K-Sample), Pearson Correlation Test, and Kruskal-Wallis Test, which were chosen because they were appropriate for the type of data and the objectives of the study that involved testing the median between multiple groups. Results showed that ECG and chest pain type significantly influenced maximum heart rate, while blood pressure did not show a significant effect. The main contribution of this study is that it provides an empirical basis for detecting modifiable cardiovascular risk factors, supporting heart attack prevention efforts through early detection, and directing further research for a more comprehensive analysis.
Bahasa Indonesia Abstract:
Penelitian ini bertujuan untuk menganalisis faktor-faktor yang memengaruhi detak jantung maksimum menggunakan pendekatan analisis statistik non-parametrik, yang fleksibel dalam menganalisis data dengan distribusi yang tidak diketahui atau tidak normal. Faktor yang dianalisis meliputi hasil pemeriksaan elektrokardiogram (EKG) istirahat, tipe nyeri dada, dan tekanan darah. Responden diklasifikasikan ke dalam kelompok risiko berdasarkan faktor-faktor ini untuk memudahkan analisis. Metode yang digunakan dalam penelitian ini mencakup Perluasan Uji Median (K-Sampel), Uji Korelasi Pearson, dan Uji Kruskal-Wallis, yang dipilih karena sesuai dengan jenis data dan tujuan penelitian yang melibatkan pengujian median antara beberapa kelompok. Hasil menunjukkan bahwa EKG dan tipe nyeri dada secara signifikan memengaruhi detak jantung maksimum, sedangkan tekanan darah tidak menunjukkan pengaruh signifikan. Kontribusi utama penelitian ini adalah memberikan dasar empiris untuk mendeteksi faktor risiko kardiovaskular yang dapat dimodifikasi, mendukung upaya pencegahan serangan jantung melalui deteksi dini, dan mengarahkan penelitian lanjutan untuk analisis yang lebih komprehensif.
Keywords
DOI: http://dx.doi.org/10.19166/jstfast.v8i2.9009
Full Text:
PDFReferences
Ayerbe, L., González, E., Gallo, V., Coleman, C. L., Wragg, A., & Robson, J. (2016). Clinical assessment of patients with chest pain: A systematic review of predictive tools. BMC Cardiovascular Disorders, 16(1), 18. https://doi.org/10.1186/s12872-016-0196-4
Darmawan, Z. M. E., & Dianta, A. F. (2023). Implementasi optimasi hyperparameter GridSearchCV pada sistem prediksi serangan jantung menggunakan SVM. Teknologi: Jurnal Ilmiah Sistem Informasi, 13(1), 8-15. https://doi.org/10.26594/teknologi.v13i1.3098
Habal, M. V., Nanthakumar, K., Austin, P. C., Freitas, C., Labos, C., & Lee, D. S. (2018). Heart rate in patients with reduced ejection fraction: Relationship between single time point measurement and mean heart rate on prolonged implantable cardioverter defibrillator monitoring. BMC Cardiovascular Disorders, 18(1), 17. https://doi.org/10.1186/s12872-018-0751-2
Handayani, R. S., & Raharjo, B. (2020). Penerapan uji Chi-Square dalam analisis hubungan karakteristik sosial ekonomi dengan tingkat pendidikan masyarakat. Jurnal Statistika, 12(1), 56-67. https://doi.org/10.1234/statistika.2020.120106
Janosi, A., Steinbrunn, W., Pfisterer, M., & Detrano, R. (1989). Heart disease [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C52P4X
Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Pearson Prentice Hall.
National Center for Health Statistics. (2024). Heart disease facts. Centers for Disease Control and Prevention. Retrieved from https://www.cdc.gov/heart-disease/data-research/facts-stats/index.html
Rahayu, S., Subekhi, A., Astuti, D., Widaningsih, I., Sartika, I., Nurhayani, N., & Rafidah, R. (2020). Upaya mewaspadai serangan jantung melalui pendidikan kesehatan. JMM (Jurnal Masyarakat Mandiri, 4(2), 163-171. https://doi.org/10.31764/jmm.v4i2.1940
Reule, S., & Drawz, P. E. (2012). Heart rate and blood pressure: Any possible implications for management of hypertension? Current Hypertension Reports, 14(6), 478-484. https://doi.org/10.1007/s11906-012-0306-3
Scheff, S. W. (2016). Nonparametric statistics. In Fundamental statistical principles for the neurobiologist (pp. 157–182). Elsevier. https://doi.org/10.1016/B978-0-12-804753-8.00008-7
Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures (5th ed.). Chapman & Hall/CRC. https://doi.org/10.1201/9780429186196
Steg, P. G. (2009). Heart rate management in coronary artery disease: The CLARIFY registry. European Heart Journal Supplements, 11(suppl_D), D13–D18. https://doi.org/10.1093/eurheartj/sup017
Teodorescu, C., Reinier, K., Uy-Evanado, A., Gunson, K., Jui, J., & Chugh, S. S. (2013). Resting heart rate and risk of sudden cardiac death in the general population: Influence of left ventricular systolic dysfunction and heart rate-modulating drugs. Heart Rhythm, 10(8), 1153–1158. https://doi.org/10.1016/j.hrthm.2013.05.009
World Health Organization. (2024). Indonesia. World Health Organization. Retrieved from https://data.who.int/countries/360
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nicholas Andrew Tanubrata, William Samuel Sambow, Jonathan Christian, Ferry Vincenttius Ferdinand
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Faculty of Science and Technology | Universitas Pelita Harapan | Lippo Karawaci, Tangerang, Indonesia, 15811 | Tel +62 21 5466057 | Fax +62 21 5461055