Challenges in Business Analytics Implementation: A Comprehensive Review Using TOE Framework
DOI:
https://doi.org/10.19166/ms.v2i2.5953Kata Kunci:
business analytics, data analytics, technological challenges, organizational challenges, environmental challengesAbstrak
Business analytics are changing how firms treat data. Using analytics, firms possess the capability to capture greater insights and predict the future, hence better decision-making process. However, the implementation of analytics in business has to be carried within the complexity of organization, technology, and environment. Given the complexity, this study aims to identify the challenge faced by firms across industries. The TOE framework is utilized to construct a more comprehensive framework of the challenges. Past studies related to implementation of business analytics are gathered and processed using literature review method. This study helps Asian firms to be more anticipative by providing a holistic and clearer view of challenges in adopting business analytics.
Referensi
Abed, S. S. (2020). Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. International Journal of Information Management, 53, 102118. https://doi.org/10.1016/j.ijinfomgt.2020.102118
Ahmed, Z., & Ji, S. (2013). Business analytics: Current state & challenges. In CONF-IRM 2013 Proceedings. http://aisel.aisnet.org/confirm2013/12
Akhmetova, S. G., & Nevskaya, L. V. (2020). HR analytics: Challenges and opportunities in Russian companies. In Proceedings of the “New Silk Road: Business Cooperation and Prospective of Economic Development” (NSRBCPED 2019) (pp. 58-63). https://doi.org/10.2991/aebmr.k.200324.011
Al-Hujran, O., Al-Lozi, E. M., Al-Debei, M. M., & Maqableh, M. (2018). Challenges of cloud computing adoption from the TOE framework perspective. International Journal of E-Business Research, 14(3), 77-94. https://doi.org/10.4018/IJEBR.2018070105
Alharthi, H. (2018). Healthcare predictive analytics: An overview with a focus on Saudi Arabia. Journal of Infection and Public Health, 11(6), 749-756. https://doi.org/10.1016/j.jiph.2018.02.005
Amalina, F., Targio Hashem, I. A., Azizul, Z. H., Fong, A. T., Firdaus, A., Imran, M., & Anuar, N. B. (2020). Blending big data analytics: Review on challenges and a recent study. IEEE Access, 8, 3629-3645. https://doi.org/10.1109/ACCESS.2019.2923270
Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29-44. https://doi.org/10.1016/j.accinf.2017.03.003
Ashrafi, A., Zare Ravasan, A., Trkman, P., & Afshari, S. (2019). The role of business analytics capabilities in bolstering firms’ agility and performance. International Journal of Information Management, 47, 1-15. https://doi.org/10.1016/j.ijinfomgt.2018.12.005
Attaran, M., & Attaran, S. (2018). Opportunities and challenges of implementing predictive analytics for competitive advantage. International Journal of Business Intelligence Research, 9(2), 1-26. https://doi.org/10.4018/IJBIR.2018070101
Attaran, M., Stark, J., & Stotler, D. (2018). Opportunities and challenges for big data analytics in US higher education: A conceptual model for implementation. Industry and Higher Education, 32(3), 169-182. https://doi.org/10.1177/0950422218770937
Baker, J. (2012). The technology-organization-environment framework. In R. Sharda & S. Voß (Eds.), Information systems theory (pp. 231-245). Springer. https://doi.org/10.1007/978-1-4419-6108-2_12
Bhosale, M., & Ukhalkar, P. (2020). The role of big data in enhancing business value through business intelligence and big data analytics. In 5th International Conference On “Innovations in IT and Management”.
Boyd, A. E. (2012, August 6). Revisiting ”˜what is analytics’. Analytics Magazine. https://pubsonline.informs.org/do/10.1287/LYTX.2012.04.09/full
Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The role of big data and predictive analytics in retailing. Journal of Retailing, 93(1), 79-95. https://doi.org/10.1016/j.jretai.2016.12.004
Cao, G., Tian, N., & Blankson, C. (2021). Big data, marketing analytics, and firm marketing capabilities. Journal of Computer Information Systems, 62(3), 442-451. https://doi.org/10.1080/08874417.2020.1842270
Colangelo, E., Kröger, T., & Bauernhansl, T. (2018). Substitution and complementation of production management functions with data analytics. Procedia CIRP, 72, 191-196. https://doi.org/10.1016/j.procir.2018.03.145
Dai, H. N., Wang, H., Xu, G., Wan, J., & Imran, M. (2020). Big data analytics for manufacturing internet of things: Opportunities, challenges and enabling technologies. Enterprise Information Systems, 14(9-10), 1279-1303. https://doi.org/10.1080/17517575.2019.1633689
Earley, C. E. (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493-500. https://doi.org/10.1016/j.bushor.2015.05.002
Frazzetto, D., Nielsen, T. D., Pedersen, T. B., & Šikšnys, L. (2019). Prescriptive analytics: A survey of emerging trends and technologies. The VLDB Journal, 28(4), 575-595. https://doi.org/10.1007/s00778-019-00539-y
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130. https://doi.org/10.1108/JEIM-08-2013-0065
Hamilton, R. H., & Sodeman, W. A. (2019). The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources. Business Horizons, 63(1), 85-95. https://doi.org/10.1016/j.bushor.2019.10.001
Holsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130-141. https://doi.org/10.1016/j.dss.2014.05.013
Isik, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information and Management, 50(1), 13-23. https://doi.org/10.1016/j.im.2012.12.001
Kash, B. A., Spaulding, A., Gamm, L. D., & Johnson, C. (2014). Leadership, culture, and organizational technologies as absorptive capacity for innovation and transformation in the healthcare sector: A framework for research. Change Management, 13(1), 1-13. https://doi.org/10.18848/2327-798x/cgp/v13i01/50740
Krishnamoorthi, S., & Mathew, S. K. (2018). Business analytics and business value: A comparative case study. Information and Management, 55(5), 643-666. https://doi.org/10.1016/j.im.2018.01.005
Kumar, A., & Krishnamoorthy, B. (2020). Business analytics adoption in firms: A qualitative study elaborating TOE framework in India. International Journal of Global Business and Competitiveness, 15(2), 80-93. https://doi.org/10.1007/s42943-020-00013-5
Lautenbach, P., Johnston, K., & Adeniran-Ogundipe, T. (2017). Factors influencing business intelligence and analytics usage extent in South African organisations. South African Journal of Business Management, 48(3), 23-33. https://doi.org/10.4102/sajbm.v48i3.33
Lennerholt, C., van Laere, J., & Söderström, E. (2018). Implementation challenges of self service business intelligence: A literature review. In Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 5055-5063). https://doi.org/10.24251/hicss.2018.631
Liu, K., & Shi, J. (2015). A systematic approach for business data analytics with a real case study. International Journal of Business Analytics, 2(4), 1-22. https://doi.org/10.4018/IJBAN.2015100102
Liu, Yi., Han, H., & DeBello, J. (2018). The challenges of business analytics: Successes and failures. Proceedings of the 51st Hawaii International Conference on System Sciences, 9, 840-849. https://doi.org/10.24251/hicss.2018.105
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information and Management, 57(2), 103169. https://doi.org/10.1016/j.im.2019.05.004
Omar, Y. M., Minoufekr, M., & Plapper, P. (2019). Business analytics in manufacturing: Current trends, challenges and pathway to market leadership. Operations Research Perspectives, 6, 100127. https://doi.org/10.1016/j.orp.2019.100127
Power, D. J., Heavin, C., McDermott, J., & Daly, M. (2018). Defining business analytics: An empirical approach. Journal of Business Analytics, 1(1), 40-53. https://doi.org/10.1080/2573234X.2018.1507605
Ramanathan, R., Philpott, E., Duan, Y., & Cao, G. (2017). Adoption of business analytics and impact on performance: A qualitative study in retail. Production Planning and Control, 28(11-12), 985-998. https://doi.org/10.1080/09537287.2017.1336800
Raut, R. D., Yadav, V. S., Cheikhrouhou, N., Narwane, V. S., & Narkhede, B. E. (2021). Big data analytics: Implementation challenges in Indian manufacturing supply chains. Computers in Industry, 125, 103368. https://doi.org/10.1016/j.compind.2020.103368
Saghafian, M., Laumann, K., & Skogstad, M. R. (2021). Stagewise overview of issues influencing organizational technology adoption and use. Frontiers in Psychology, 12, 1-23. https://doi.org/10.3389/fpsyg.2021.630145
Stjepić, A. -M., Pejić Bach, M., & Bosilj Vukšić, V. (2021). Exploring risks in the adoption of business intelligence in SMEs using the TOE framework. Journal of Risk and Financial Management, 14(2), 58. https://doi.org/10.3390/jrfm14020058
Sun, Z., Strang, K., & Firmin, S. (2017). Business analytics-based enterprise information systems. Journal of Computer Information Systems, 57(2), 169-178. https://doi.org/10.1080/08874417.2016.1183977
Ullah, F., Qayyum, S., Thaheem, M. J., Al-Turjman, F., & Sepasgozar, S. M. E. (2021). Risk management in sustainable smart cities governance: A TOE framework. Technological Forecasting and Social Change, 167(3), 120743. https://doi.org/10.1016/j.techfore.2021.120743
Vassakis, K., Petrakis, E., & Kopanakis, I. (2018). Big data analytics: Applications, prospects and challenges. Lecture Notes on Data Engineering and Communications Technologies, 10(1), 3-20. https://doi.org/10.1007/978-3-319-67925-9_1
Vidgen, R., Hindle, G., & Randolph, I. (2020). Exploring the ethical implications of business analytics with a business ethics canvas. European Journal of Operational Research, 281(3), 491-501. https://doi.org/10.1016/j.ejor.2019.04.036
Ward, M. J., Marsolo, K. A., & Froehle, C. M. (2014). Applications of business analytics in healthcare. Business Horizons, 57(5), 571-582. https://doi.org/10.1016/j.bushor.2014.06.003
Whitelock, V. (2018). Business analytics and firm performance: Role of structured financial statement data. Journal of Business Analytics, 1(2), 81-92. https://doi.org/10.1080/2573234X.2018.1557020
Wilder, C. R., & Ozgur, C. O. (2015). Business analytics curriculum for undergraduate majors. INFORMS Transactions on Education, 15(2), 180-187. https://doi.org/10.1287/ited.2014.0134
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website). The final published PDF should be used and bibliographic details that credit the publication in this journal should be included.