ORIGINAL RESEARCH

THE RELATIONSHIP BETWEEN BODY MASS INDEX AND THE DEGREE OF DEMENTIA IN ELDERLY PATIENTS WITH MEMORY IMPAIRMENT AT MEMORY CLINIC SILOAM HOSPITALS LIPPO VILLAGE

N. Muliawan¹, Maurensia¹, R. F. V. Situmeang²

Abstract

Introduction: Body mass index (BMI) can describe the level of nutrition and vitality of a person. Monitoring BMI values prevents elderlies from various risks of disease, one of which is dementia. The development of neuropathological lesions in the olfactory bulb has been proposed to cause symptoms which affect dementia patients' appetite and thus resulting in weight loss.

Methods: A cross-sectional study was conducted among 55 memory impairment patients from ages ≥65 years at Siloam Hospitals Lippo Village Memory Clinic. Data was obtained using Montreal Cognitive Assessment – Indonesian Version (MoCA-INA) and Clinical Dementia Rating Scale (CDRS) and BMI was measured using Seca 703 instrument.

Results: A significant relationship was found between body mass index and the degree of dementia with a value of p = 0.046 for MoCA examination and p = 0.039 for CDRS examination. The results of the analysis shows that underweight-normal (BMI <23kg/m²) patients have 3.8 times (95% CI 1.2-12.5) and 4.6 times (95% CI 1.2-17.0) the risk of having a moderate-severe degree respectively compared to overweight-obese (BMI ≥ 23 kg/m²) patients.

Conclusions: Lower late life BMI is related to higher degree of dementia **Keywords**: Body mass index, Dementia degree, MoCA-INA, CDRS

Received: June 13th,

2025

Accepted: August 10th,

2025

Published: August

30th, 2025

How to cite this paper:

Muliawan N,
Maurensia, Situmeang
RFV. The Relationship
between Body Mass
Index and The Degree
of Dementia in Elderly
Patients with Memory
Impairment at
Memory Clinic Siloam
Hospitals Lippo
Village. Lumina
Indones J Neurol.
2025; 1(2); 25-30

Introduction

Dementia is a progressive condition that affects memory, cognition, behavior, and social functioning, ultimately interfering with daily activities. The most common cause is Alzheimer's disease, followed by vascular dementia, Lewy body dementia, and frontotemporal dementia. Clinical manifestations include cognitive impairment and neuropsychiatric symptoms, collectively known as

¹Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia

²Department of Neurology, Siloam Hospitals Lippo Village, Tangerang, Indonesia

^{*}Correspondence: nathanmuliawan02@gmail.com; ORCID ID: https://orcid.org/0009-0004-0968-5517

behavioral and psychological symptoms of dementia (BPSD).

Globally, dementia ranks among the top ten most burdensome conditions in the elderly and is the seventh leading cause of death. In 2015, there were approximately 46.8 million individuals living with dementia worldwide, and this number is projected to double every 20 years. In Indonesia, the number of people with dementia is expected to rise from 1.2 million to 3.9 million by 2050. The disease also imposes significant physical, psychological, and economic burdens on caregivers.

Body Mass Index (BMI) reflects the nutritional status of older adults and has been associated with cognitive function. A high BMI during midlife increases the risk of developing dementia, whereas obesity in late life appears to have a protective effect, possibly due to reverse causation. Conversely, being underweight has consistently been linked to a higher risk of dementia.

However, the association between BMI and the severity of dementia remains unclear, particularly in the Indonesian population. This study aims to examine the relationship between body mass index and cognitive impairment in elderly at the Memory Clinic of Siloam Hospitals Lippo Village.

Materials and Methods

This study was a cross-sectional, unpaired categorical analytic study. data, including BMI Primary measurements, were collected using the Seca 703 scale. Secondary data on cognitive impairment and dementia

severity were obtained from medical records based on MoCA-INA and CDR-S scores. Participants were recruited from the Memory Clinic at Siloam Hospitals Lippo Village according to inclusion criteria.

Data collection involved structured questionnaires and direct assessments. Collected data were tabulated using Microsoft Excel and analyzed using SPSS version 25.0. The Chi-square test was employed for statistical analysis. Ethical approval was obtained from the Research Ethics Committee of the Faculty of Medicine, Pelita Harapan University prior to study implementation.

Results

Subject characteristic

Based on the demographic data presented in Table 1, a total of 55 patients were included in the study, consisting of 30 males (54.5%) and 25 females (45.5%). The patients' ages ranged from 65 to 90 years, with a mean age of 73 years. Body Mass Index (BMI) was categorized according to the Asia-Pacific classification: underweight (9.1%, n=5), normal (38.2%, n=21), overweight (25.5%, n=14), and obese (27.3%, n=15). Cognitive status based on MoCA scores showed that 6 patients (10.9%) were within the normal range, 30 (54.5%) had mild impairment, 12

(21.8%) had moderate impairment, and 7 (12.7%) had severe impairment. In addition to MoCA, the Clinical Dementia Rating Scale (CDRS), considered a more accurate indicator of dementia severity, classified patients as follows: questionable (45.5%, n=25), mild (27.3%, n=15), moderate (16.4%, n=9), and severe (10.9%, n=6).

Body Mass Index and Dementia Severity All data obtained were collected and analyzed using a bivariate analytical model with the chi-square method. The analysis was conducted to examine the relationship between Body Mass Index (BMI) and the degree of dementia in elderly patients at the Memory Clinic of Siloam Hospitals Lippo Village.

Table 1. Subject Characteristics

Variable	n	Percentage		
Sex				
Males	30	54,5%		
Females	25	45.5%		
Age	Range	Mean 73		
	65-90			
Body Mass Index				
Underweight	5	9,1%		
Normal	21	38,2%		
Overweight	14	25,5%		
Obese	15	27,3%		
MoCA				
Normal	6	10,9%		
Mild	30	54,5%		
Moderate	12	21,8%		
Severe	7	12,7%		
CDRS				
Questionable	25	45,5%		
Mild	15	27,3%		
Moderate	9	16,4%		
Severe	6	10,9%		

Table 2 shows the data results, which indicate a significant relationship between body mass index and the degree of dementia, based on MoCA (Montreal Cognitive Assessment) examination indicators, with a P-value of 0.046. In the underweight-normal BMI group, 13 patients (50%) showed moderate-severe results, while 13 patients also showed normal-mild results.

Meanwhile, in the overweight-obese BMI group, there was a substantial difference in examination results, with 23 patients (79.3%) showing normal-mild

results and 6 patients (20.7%) showing moderate-severe results. Additionally, the obtained odds ratio was 3.833 (95% CI = 1.175–12.506). From the odds ratio, it can be interpreted that patients with an underweight-normal BMI are 3.833 times more likely to have a moderate-severe degree of dementia compared to patients with an overweight-obese BMI.

Another indicator used is the CDRS (Clinical Dementia Rating Scale), which is considered more effective in assessing the severity of dementia. Based on the analysis results in Table 3, a significant relationship was again found between body mass index (BMI) and the degree of dementia, with a P-value of 0.039. A greater difference in percentages was again observed between patients with an overweight-obese BMI, with 25 patients (86.2%) showing normal-mild results and 4 patients (13.8%) showing moderate-severe results.

In the underweight-normal BMI group, 11 patients (42.3%) had moderate-severe results and 15 patients (57.7%) had normal-mild results, out of a total of 26 patients. The analysis yielded an odds ratio of 4.583 (95% CI = 1.235–17.008).

Table 2. The Association Between Body Mass Index and Dementia Severity (MoCA).

	MoCA						
вмі	Normal- Mild		Moderate- Severe		Total	OR (95%CI)	P- Value
	n	%	n	%	-		
Overweight-	23	79,3	6	20,7	29	3,833	
Obese Underweight- Normal	13	50	13	50	26	(1,175- 12,506)	0,046
Total	36	65,5	19	34,5	55		

Table 3. The Association Between Body Mass Index and Dementia Severity (CDRS)

ВМІ	CDRS						
	Normal-		Moderate-		Total	OR (95%C	P- Value
	Mild		Severe				
	n	%	n	%	•	I)	
Overweight-	25	86,2	4	13,8	29	3,583	
Obese						(1,235	
Underweight	15	57,7	11	42,3	26	-	0,039
-Normal						17,00	
						8)	
Total	40	72,7	15	27,3	55		

Discussion

Research on BMI and dementia shows conflicting results. A 2015 study by Nawab Qizilbash et al. found that being underweight was linked to a 34% higher dementia risk, while the Whitehall II study showed that obesity at age 50 increased risk, but this link weakened at older ages. Given the limited research in Indonesia, our study provides new evidence. Our findings show a significant link between BMI and dementia severity in elderly Indonesian patients. A low BMI appears to increase dementia risk, while a higher BMI may be protective, especially in older age. This aligns with findings from other countries and highlights the importance of maintaining a healthy BMI to help manage dementia progression.

However, the study has limitations. Its cross-sectional design prevented from studying the effects of weight changes. Physical activity was uncontrolled factor, and a purposive sampling method created potential for bias due to a limited sample size and timeframe. For future studies, recommend using a longitudinal design to weight changes over track Researchers should also use a larger sample size, control for confounders like

physical activity, and use more specific variable categories to obtain more robust results. This will help doctors and patients use BMI monitoring as a tool to improve the quality of life for those with dementia.

Conclusion

The findings highlight the importance of maintaining a healthy BMI, particularly in the elderly, as a potential strategy for mitigating the progression of dementia. Further research is encouraged to examine the relationship with weight gain or loss, explore the underlying mechanisms, and to confirm these findings in other populations.

Conflict of Interest

The authors declared no conflict of interest.

Acknowledgment

The authors declared no acknowledgment.

Funding

No external funding was received.

References

- International AD, University M. World Alzheimer Report 2021: Journey through the diagnosis of dementia. wwwalzintorg. 2021 Sep 21;2–314. https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf
- Dowrick A, Southern A. Dementia 2014: Opportunity for Change. 2014 Sep. https://www.alzheimers.org.uk/sites/default/files/migrate/downloads/dementia_20
 14 opportunity for change.pdf
- Ong PA, Muis A, Rambe AS, Pramono A, Riyanto B, Rahmawati D, et al. Panduan Praktik Klinik Diagnosis Dan

- Penatalaksanaan Demensia Perhimpunan Dokter Spesialis Saraf Indonesia Januari 2015. 2015 Jan.
- 4. Prince M, Wimo A, Ali GC, Wu YT, Prina M, Kit Y, et al. World Alzheimer Report 2015 The Global Impact of Dementia an Analysis of Prevalence, Incidence, cost and Trends. 2015.
 - https://www.alzint.org/u/WorldAlzheimer Report2015.pdf
- 5. Moise P, Schwarzinger M, Um MY, the Dementia Experts' Group. Dementia Care in 9 OECD Countries: a Comparative Analysis. 2004 Jul. https://www.oecd.org/content/dam/oecd /en/publications/reports/2004/07/demen tia-care-in-9-oecd
 - countries g17a1696/485700737071.pdf
- 6. Pinguart M, Sorensen S. Correlates of Physical Health of Informal Caregivers: a Meta-Analysis. The Journals Gerontology Series **Psychological** B: Sciences and Social Sciences. 2007 Mar 1;62(2):P126-37.
 - https://doi.org/10.1093/geronb/62.2.p12
- 7. Wahid BDJ, Sudarma V. Hubungan Status Gizi Dan Penurunan Fungsi Kognitif Pada Lansia. Seminar Nasional Pakar Ke 1. 2018;1.
 - https://doi.org/10.25105/pakar.v0i0.2655
- 8. Gunstad J, Paul RH, Cohen RA, Tate DF, Gordon E. Obesity Is Associated with Memory Deficits in Young and Middle-Aged Adults. Eating and Weight Disorders -Studies on Anorexia, Bulimia and Obesity. 2006 Mar;11(1):e15-9.
 - https://doi.org/10.1007/BF03327747
- 9. Fitzpatrick AL, Kuller LH, Lopez OL, Diehr P, O'meara E, Longstreth WT, et al. Mid-and Late-Life Obesity: Risk of Dementia in the Cardiovascular Health Cognition Study. Neurol. 2009;66(3):336-42. https://doi.org/10.1001/archneurol.2008. 582
- 10. Tolppanen AM, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, et al. Midlife and Late-Life Body Mass Index and Late-Life Dementia: Results from a Prospective Population-Based Cohort. Journal of Alzheimer's Disease.

- 2014;38(1):201-9. https://doi.org/10.3233/jad-130698
- 11. Ma Y, Ajnakina O, Steptoe A, Cadar D. Higher Risk of Dementia in English Older Individuals Who Are Overweight or Obese. International Journal of Epidemiology. 2020 23;49(4):1353-65. Jun https://doi.org/10.1093/ije/dvaa099
- 12. Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, et al. Relation between Body Mass Index and Cognitive Function in Healthy Middle-Aged Men and Women. Neurology. 2006 Oct 9;67(7):1208-14. https://doi.org/10.1212/01.wnl.00002380 82.13860.50
- 13. Pedditizi E, Peters R, Beckett N. The Risk of Overweight/Obesity in Mid-Life and Late Life for the Development of Dementia: Systematic Review and Meta-Analysis of Longitudinal Studies. Age and Ageing. 2016 Jan;45(1):14-21.
 - https://doi.org/10.1093/ageing/afv151
- 14. Hughes T, Borenstein M, Schofield E, Wu M, Larson E. Association between Late-Life Body Mass Index and Dementia: the 2009 Kame Project. May. https://doi.org/10.1212/WNL.0b013e318 1a60a58
- 15. Gustafson DR, Backman K, Waern M, Ostling S, Guo X, Zandi P, et al. Adiposity Indicators and Dementia over 32 Years in Sweden. Neurology. 2009 Nov 9;73(19):1559-66. https://doi.org/10.1212/WNL.0b013e318 1c0d4b6
- 16. Arjuna T, Soenen S, Hasnawati R, Lange K, Chapman I, Luscombe-Marsh N. A Cross-Sectional Study of Nutrient Intake and Health Status among Older Adults in Yogyakarta Indonesia. Nutrients. 2017 Nov 13;9(11):1240.
 - https://doi.org/10.3390/nu9111240
- 17. Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K, et al. BMI and Risk of Dementia in Two Million People over Two decades: a Retrospective Cohort Study. The Lancet Diabetes & Endocrinology. 2015 Jun;3(6):431-6.

https://doi.org/10.1016/S2213-8587(15)00033-9

- Ready RE, Ott BR, Grace J, Cahn-Weiner DA. Apathy and Executive Dysfunction in Mild Cognitive Impairment and Alzheimer Disease. American Journal of Geriatric Psychiatry. 2003;11(2):222–8. https://doi.org/10.1097/00019442-200303000-00013
- 19. Kovács T, Cairns NJ, Lantos PL. Olfactory C entres in Alzheimer's disease: Olfactory Bulb Is Involved in Early Braak's Stages. NeuroReport. 2001 Feb 12;12(2):285–8. https://doi.org/10.1097/00001756-200102120-00021
- 20. Braak H, Braak E. Neuropathological Stageing of Alzheimer-related Changes. Acta Neuropathol. 1991 Sep;82(4):239–59. https://doi.org/10.1007/BF00308809
- 21. Yang EJ, Kim KW, Lim JY, Paik NJ. Relationship between Dysphagia and Mild Cognitive Impairment in a Community-Based Elderly Cohort: The Korean longitudinal Study on Health and Aging. J Am Geriatr Soc. 2014 Jan;62(1):40–6. https://doi.org/10.1111/jgs.12606