ORIGINAL RESEARCH

ASSOCIATION BETWEEN FLAT FOOT SEVERITY AND LOW BACK PAIN RECURRENCE AMONG PRE-CLINICAL MEDICAL STUDENTS: A CROSS-SECTIONAL STUDY

Annisa Ummi Hafizhah Arif Fiyanto¹, Vonny Fibrianty Goenawan^{2,3}

Abstract

Background: Low back pain (LBP) affects over 619 million people globally and is highly prevalent among medical students. Flat foot (pes planus), a biomechanical alteration involving the collapse of the medial longitudinal arch, may contribute to spinal stress and LBP recurrence, yet remains underexplored in young adult populations.

Methods: This cross-sectional study involved 67 pre-clinical medical students aged 19–23 years with a history of recurrent LBP in the past year. LBP frequency was assessed using the Nordic Musculoskeletal Questionnaire and Numeric Rating Scale (NRS). Foot arch structure was evaluated via Clarke's Angle, classifying flat foot severity into mild (35°–41°), moderate (30°– 34.9°), and severe (<30°). Data were analysed using Chi-square tests, with significance set at p < 0.05.

Results: LBP was reported by 80.6% of participants, with flat foot classified as mild in 43.3%, moderate in 37.3%, and severe in 19.4%. A significant association was found between flat foot severity and LBP recurrence (p < 0.001). Students with mild or moderate flat foot had a lower odd of experiencing moderate-frequency LBP compared to those with severe flat foot (OR = 0.152 95% CI: 0.048–0.483).

Discussion: These findings support the notion that structural abnormalities of the foot, particularly flat foot, may contribute to the recurrence and persistence of LBP by influencing spinal posture, altering mechanical load distribution, and affecting neuromuscular stability.

Conclusion: Flat foot severity is significantly associated with the recurrence of LBP in medical students. Early identification and foot posture assessment may help inform preventive and corrective interventions for recurrent LBP.

Keywords: Low back pain, Flat foot, Clarke's Angle, Medical students, Recurrence, Flat foot severity

Received: June 20^{nd,}

2025

Accepted: August 9th,

2025

Published: August 30th,

2025

How to cite this paper:

Fiyanto AUHA,
Goenawan VF.
Association Between
Flat Foot Severity and
Low Back Pain
Recurrence among PreClinical Medical
Students: A CrossSectional Study. Lumina
Indones J Neurol. 2025;
1(2); 1-8

Introduction

Low back pain (LBP) is defined as pain or discomfort located below the costal margin and above the inferior gluteal folds, with or without leg symptoms, and is often associated with limited mobility and functional impairment¹. Globally, LBP remains the leading cause of years lived

¹Faculty of Medicine, Pelita Harapan University, Tangerang, Banten, Indonesia

²Department of Neurology, Siloam Hospital Lippo Village, Tangerang, Banten, Indonesia

³Department of Neurology, Faculty of Medicine, Pelita Harapan University, Tangerang, Banten, Indonesia

^{*}Correspondence: anumhafzz@gmail.com

with disability (YLDs), affecting over 619 million individuals as of 2020, with the number projected to reach 843 million by 2050^{2,3}. In Indonesia, the situation is similarly concerning. A large-scale study reported a 12-month prevalence of LBP of 44.29% among middle-aged adults, making it one of the most common musculoskeletal complaints⁴.

Among university students, especially those in medical education, the burden of LBP is particularly notable. The prevalence of LBP among medical students ranges from 46.9% to 82% in various studies^{5–7}. A study conducted at the Faculty of Medicine, Universitas Pelita Harapan, reported a prevalence of 76% among pre-clinical students, highlighting the significance of this condition in young, sedentary, and academically burdened populations⁸.

LBP in students can lead to absenteeism, decreased academic performance, poor sleep quality, and earlyonset musculoskeletal dysfunctions. While known risk factors such as aging, obesity, poor ergonomics, inactivity or sedentary lifestyle, and work overload are wellestablished^{9–12}. However, flat foot remains underexplored biomechanical an contributor. Pes planus is characterized by the flattening of the medial longitudinal arch, causing altered lower limb alignment and increased lumbar stress¹³. Previous studies by Lulupoy et al. and Kosashvili et al. reported a significant association between flat foot and increased LBP risk^{14,15}.

Flat foot can be objectively assessed using Clarke's Angle, a non-invasive and reliable method based on static footprint analysis. This approach provides a simple yet validated means to classify foot arch

collapse¹⁶. Despite its clinical utility, limited research has examined flat foot severity as a potential risk for frequent or repeated episodes of LBP among medical students. Most existing data originate from clinical or geriatric populations, and therefore may not be generalizable to young, active adults^{14,15}. This study addresses that gap by investigating the relationship between flat foot severity and the recurrence of LBP among pre-clinical medical students. The findings are expected to provide insight into underrecognized biomechanical contributors and support targeted preventive strategies for musculoskeletal health in student populations.

Methods

This cross-sectional analytical study involved 67 pre-clinical medical students from the Faculty of Medicine, Universitas Pelita Harapan, and was conducted between February and April 2025. Participants were selected using purposive sampling based on inclusion criteria: age between 19 and 23 years and a history of recurrent LBP within the past twelve months. Exclusion criteria included obesity (BMI ≥ 30 kg/m²), scoliosis, spinal trauma or surgery, congenital spinal abnormalities, and neurologic conditions that could affect spinal or gait biomechanics.

After obtaining written informed consent, participants completed a structured questionnaire capturing demographic characteristics (age, sex) and clinical data related to LBP, using the Standardized Nordic Musculoskeletal Questionnaire (NMQ). This instrument has been validated by Chareani et al.,

demonstrated excellent reliability (Cronbach's Alpha > 0.945) and 100% construct validity agreement, with specificity exceeding 85% in the lower back, neck, and shoulder regions, making it a valid and reliable tool for assessing musculoskeletal complaints in Indonesian populations¹⁷. LBP recurrence was categorized into three groups: lowfrequency recurrence (<1 episode/month), moderate-frequency recurrence (approximately 1 episode/month), and highfrequency recurrence (>1 episode/month). Pain intensity was assessed using the Numeric Rating Scale (NRS) and classified as mild (1-3), moderate (4-6), or severe (7-10). Ratings were recorded both at rest and during forward trunk flexion. Participants also reported additional symptoms, such as radiation of pain to the lower extremities.

Assessment of foot arch structure was performed using Clarke's Angle (CA), obtained through static footprint analysis. Each participant was instructed to step onto a water-soluble ink pad and then place their foot firmly on a labelled sheet of drawing paper for approximately ten seconds. This process was repeated until a clear and complete footprint was obtained. Using a ruler, pen, and a stainless-steel protractor, the Clarke's Angle was measured as the angle formed between a line drawn along the medial border of the footprint and a second line connecting the deepest point of the medial longitudinal arch to the medial forefoot. Based on this angle, foot arch type was categorized into: mild pes planus (35°-41°), moderate pes planus (30°-34.9°), and severe pes planus (<30°)18.

Statistical Analysis

IBM's Statistical Package for the Social Sciences (SPSS) version 26 was used to manage and analyze all collected data. Descriptive analysis was conducted for demographic variables and clinical characteristics, including gender, age, flat foot severity (based on Clarke's Angle), recurrence frequency, and pain intensity. Bivariate analysis was performed to examine the association between flat foot severity and the recurrence of LBP.

Categorical variables, including LBP recurrence frequency and pain severity, were analyzed using the Chi-square test or continuity correction test, depending on expected cell counts. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the strength and precision of associations. All statistical tests were two-tailed, and results were considered statistically significant at p < 0.05.

Ethical Statement

This study was declared to have passed the ethical review by the Faculty of Medicine, Universitas Pelita Harapan, by obtaining ethics number 125/K-LKJ/ETIK/II/2025. All participants provided written informed consent prior to enrollment, following a clear explanation of the study's objectives, procedures, and potential benefits. Participation was entirely voluntary and based on full understanding of the research purpose.

Results

A total of 120 pre-clinical medical students from the Faculty of Medicine,

Universitas Pelita Harapan were initially recruited for this study. Following the screening process, 22 students were excluded due to obesity (BMI ≥ 30 kg/m²), 15 due to a history of spinal disorders such as scoliosis, lordosis, or spondylitis, and 16 due to a prior history of back trauma. As a result, 67 participants met the inclusion criteria and were included in the final analysis.

Table 1 summarizes the univariable characteristics of the study population. Most participants were female (73.1%) and predominantly aged 20-21 years (71.6%). Based on Clarke's Angle, 43.3% had mild flat foot, 37.3% had moderate, and 19.4% had severe flat foot. The prevalence of LBP was high, with 80.6% of respondents reporting pain in the past year. Low- frequency LBP was reported by 59.7% of participants, experienced while 40.3% moderate frequency, and none reported highfrequency episodes. Among those with LBP, the majority experienced moderate pain intensity (68.5%), and 44.4% reported radiation of pain to the lower limbs.

Table 2 shows the association between flat foot severity, measured using Clarke's Angle, and the frequency of LBP recurrence among pre-clinical medical students. Among those with mild flat foot (35°-41°), 35.8% experienced low-frequency recurrence (<1 episode/month), while only 7.5% reported moderate-frequency episode/month). recurrence (≈1 Conversely, in the moderate- to-severe flat foot group (≤34.9°), 32.8% experienced moderate-frequency recurrence, and 23.9% reported low-frequency recurrence. Statistical analysis revealed a significant association between flat foot severity and LBP recurrence frequency (p < 0.001), with an odds ratio of 0.152 (95% CI: 0.048–0.483), indicating that students with mild flat foot had significantly lower odds of experiencing moderate-frequency LBP compared to those with more severe deformities.

Table 1. Univariable Characteristics of Pre-Clinical Medical Students (n = 67)

Characteristic	Categories	n (%)
Age Group (years)	19	12 (17.9)
	20	27 (40.3)
	21	21 (31.3)
	≥ 22	7 (10.5)
Gender	Male	18 (26.9)
	Female	49 (73.1)
Flat Foot Severity	Mild (35°–41°)	29 (43.3)
(Clarke's Angle)	Moderate (30°-34,9°)	25 (37.3)
	Severe (<30°)	13 (19.4)
Reported Low	Yes	54 (80.6)
Back Pain (LBP)	No	13 (19.4)
LBP Intensity	Mild (1 – 3)	17 (31.5)
(Numeric Rating	Moderate (4 – 6)	37 (68.5)
Scale)	Severe (7 – 10)	0 (0.0)
	Low-Frequency (<1x/month)	40 (59.7)
	Moderate-Frequency (~1x/month)	27 (40.3)
	High-Frequency	0 (0.0)
	(>1x/month)	
Pain Radiation to	Yes	24 (44.4)
Lower Limbs	No	30 (55.6)

Table 2. Association Between Flat Foot Severity and Frequency of Low Back Pain Recurrence in Pre-Clinical Medical Students

_	LBP Recurrence				
Subject	Low-	Moderate-	P value	OR [95%	
characteristics	frequency	frequency	P value	CI]	
	(<1x/month)	(<1x/month)			
Flat Foot Severity (Clarkes's Angle)					
Mild (35°-41°)	24 (35.8%)	5 (7.5%)	<0.001	0.152	
Moderate –	16 (23.9%)	22 (32.8%)		(0.048 -	
Severe (≤34,9°)				0.483)	

Discussion

LBP constitutes a substantial contributor to the global burden of musculoskeletal disorders, particularly

among university populations^{19,20}. Medical students are uniquely predisposed to LBP due to prolonged sedentary behaviors, academic stress, disrupted sleep cycles, and insufficient ergonomic awareness during pre-clinical training years. Multiple studies have reported LBP prevalence rates exceeding 70% in this demographic^{6–8,12}.

In the present study, we observed that 80.6% of pre-clinical medical students experienced LBP within the preceding year. Univariable analysis revealed predominantly female cohort (73.1%), with most participants aged between 20-21 years (71.6%). This sex disparity is consistent with prior literature, as reported by Vujcic et al., who found that both lifetime and 12- month prevalence rates of LBP were significantly higher among female medical students, with contributing factors including mental stress, prolonged sitting, fatigue, and poor posture²¹. Similarly, Smith et al. observed that female students reported LBP 1.8 times more frequently than their male counterparts, underscoring the influence of sex-related biomechanical and psychosocial variables²¹. Notably, this pattern of increased prevalence in females has also been observed in younger populations; a large cross-sectional study by Yao et al. involving over 2000 Chinese schoolchildren aged 10–18 years revealed a significantly higher 3-month LBP prevalence among girls (33.1%) compared to boys (24.7%), with greater frequency, radiating symptoms, and functional impact, thereby suggesting that sex-based differences in LBP manifestation may emerge early and persist into adulthood²².

Additionally, the severity of flat foot based on Clarke's Angle showed a notable

distribution: 43.3% had mild flat foot, 37.3% moderate, and 19.4% severe. The link between flat foot and LBP can be explained biomechanically. A decreased medial longitudinal arch alters the biomechanics of the lower extremities, leading to excessive foot pronation and internal tibial rotation. These changes may cause compensatory pelvic tilt, lumbar hyperlordosis, and increased axial loading on spinal structures. Over time, such postural adaptations can result in paraspinal muscle fatigue, facet joint irritation, and intervertebral disc stress—factors that contribute to recurrent episodes of LBP^{23–25}.

Our bivariate analysis demonstrated a robust and statistically significant association between increased severity of flat foot and higher frequency of LBP recurrence (p < 0.001). Specifically, among participants with mild flat foot (Clarke's angle 35°-41°), only 7.5% reported moderate-frequency recurrence (approximately once per month), compared to 32.8% of those with moderate to severe deformity (≤34.9°). The calculated odds ratio of 0.152 (95% CI: 0.048-0.483) indicates that students with mild flat foot were approximately seven times less likely to experience recurrent LBP than their counterparts with more pronounced arch collapse.

These findings are in accordance with previous studies which have implicated flat foot as a modifiable extrinsic risk factor for spinal discomfort and dysfunction. Godaria et al. further substantiated this association, demonstrating that foot posture, along with working posture, significantly correlated with LBP among workers engaged in prolonged standing

occupations, whereas other factors such as repetition, core strength, and flexibility showed no significant relationship²⁶. In a large-scale epidemiological study, Almutairi et al. reported that individuals with flat feet had markedly higher prevalence of both acute (51.6%) and chronic LBP (48.4%), with flat foot increasing the odds of acute and chronic LBP by 3.28 and 4.5 times, respectively²⁷. Amoozadeh et al., using the navicular drop test in a case-control design, identified significant a relationship between decreased medial longitudinal arch and the presence of chronic mechanical LBP, highlighting the role of altered foot mechanics in disrupting postural alignment and gait stability, thereby contributing to spinal loading and discomfort²⁸. Moezy et al. conducted a case- control study involving 242 subjects, using the Helbing sign and Navicular Drop Test to assess foot overpronation, and found significant associations with LBP intensity, duration, and reduced ankle dorsiflexion (p = 0.001)²⁹. These results support the kinetic chain theory linking foot posture to spinal load. Likewise, Lulupoy et al. used Clarke's angle (≤30°) in a casecontrol design and showed that flat foot increased the risk of mechanical LBP by over six times (OR: 6.29; p < 0.001)¹⁴. Cumulatively, the evidence supports the notion that structural abnormalities of the foot, particularly flat foot, may contribute to the recurrence and persistence of LBP by influencing posture, spinal altering mechanical load distribution, and affecting the stability of neuromuscular function.

While our study offers valuable insight into a relatively underexplored etiological factor among medical students, several

methodological limitations must acknowledged. The cross-sectional design precludes causal inference and limits temporal analysis. Self-reported measures of LBP frequency may also be subject to recall or reporting bias. Additionally, Clarke's Angle, while widely used, may not fully capture the dynamic aspects of foot biomechanics. Future studies incorporate gait analysis and longer followup to assess the impact of flat foot orthotics) LBP correction (e.g., on outcomes.

Conclusion

In conclusion, this study demonstrates a significant association between the severity of flat foot and increased recurrence of LBP among pre-clinical medical Biomechanical students. alterations due to arch collapse likely to compensatory postural contribute changes and spinal stress, reinforcing the of relevance foot posture in musculoskeletal health. Despite methodological limitations, these findings highlight flat foot as a potentially modifiable risk factor for recurrent LBP in young adults.

Conflict of Interest

The authors declared no conflict of interest.

Acknowledgment

The authors declared no acknowledgment.

Funding

No external funding was received.

References

- Balagué F, Mannion AF, Pellisé F, et al. Nonspecific low back pain. The Lancet 2012;379(9814):482-491. https://doi.org/10.1016/S0140-6736(11)60610-7
- Ferreira ML, De Luca K, Haile LM, et al. 2. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol 2023;5(6):e316-e329. https://doi.org/10.1016/S2665-9913(23)00098-X
- Muñoz Laguna J. Global Burden of Disease Estimates of Low Back Pain: Time to Consider and Assess Certainty? Int J Public Health 2024;69. https://doi.org/10.3389/ijph.2024.160655
- Makkiyah FA, Sinaga TA, Khairunnisa N. A Study from a Highly Populated Country: Risk Factors Associated with Lower Back Pain in Middle-Aged Adults. J Korean Neurosurg Soc 2023;66(2):190-198. https://doi.org/10.3340/jkns.2021.0278
- Alwashmi AH. Prevalence of Low Back Pain and Associated Factors Among Qassim University Medical Students: A Cross-Study. Cureus Sectional 2023; https://doi.org/10.7759/cureus.44596
- 6. Sany SA, Tanjim T, Hossain MI. Low back pain and associated risk factors among medical students in Bangladesh: a crosssectional study. F1000Res 2022;10:698. https://doi.org/10.12688/f1000research.5 5151.3
- 7. AlShayhan FA, Saadeddin M. Prevalence of low back pain among health sciences European students. Journal Orthopaedic Surgery & Traumatology 2018;28(2):165-170. https://doi.org/10.1007/s00590-017-2034-5
- 8. Samudra E, Kalumpiu JF. Factors Associated with Low Back Pain in Pre-Clinical Students in the Faculty of Medicine at Pelita Harapan University: Original Research. Medicinus 2024;13(3):145

- https://doi.org/10.19166/med.v13i3.8881
- 9. Medeni V, Tokatlı Doğan M, Medeni İ, et al. Low back pain, work overload, and associated factors among hospital Work 2024;78(1):167-179. caregivers. https://doi.org/10.3233/WOR-230524
- 10. Shiri R, Falah-Hassani K, Heliövaara M, et al. Risk Factors for Low Back Pain: A Population-Based Longitudinal Studv. (Hoboken) Arthritis Care Res 2019;71(2):290-299.

https://doi.org/10.1002/acr.23710

- 11. Chen S-M, Liu M-F, Cook J, et al. Sedentary lifestyle as a risk factor for low back pain: a systematic review. Int Arch Occup Environ 2009;82(7):797-806. https://doi.org/10.1007/s00420-009-0410-0
- 12. Taha YA, Al Swaidan HA, Alyami HS, et al. The Prevalence of Low Back Pain Among Medical Students: A Cross-Sectional Study Saudi Arabia. Cureus https://doi.org/10.7759/cureus.38997
- 13. Kodithuwakku Arachchige SNK, Chander H, Knight Flatfeet: Biomechanical implications, assessment and management. The Foot 2019;38:81-85. https://doi.org/10.1016/j.foot.2019.02.00
- 14. Lulupoy FAI, Pradhana TM, Siahaan YMT. Flat Foot and Its Association with Mechanical Low Back Pain: A Case-Control Study Utilizing Clarke's Angle Measurement. World Journal of Clinical 2025;5(1):34-39. Medicine Research https://doi.org/10.31586/wjcmr.2025.604
- 15. Kosashvili Y, Fridman T, Backstein D, et al. The Correlation between Pes Planus and Anterior Knee or Intermittent Low Back Pain. Foot Ankle Int 2008;29(9):910-913. https://doi.org/10.3113/FAI.2008.0910
- 16. González-Martín C, Pita-Fernández S, Seoane-Pillado T, et al. Variability between Clarke's angle and Chippaux-Smirak index for the diagnosis of flat feet. Colomb Med 2017:48(1):25-31. http://dx.doi.org/10.25100/cm.v48i1.194
- 17. Chairani A. Validity And Reliability Test of The Nordic Musculoskeletal

- Questionnaire with Formal and Informal Sector Workers. In: Childhood Stunting, Wasting, and Obesity, as the Critical Global Health Issues: Forging Cross-Sectoral Solutions Masters Program in Public Health, Universitas Sebelas Maret; 2020; pp. 100–106. https://doi.org/10.26911/the7thicph-FP.05.06
- 18. Hegazy F, Aboelnasr E, Abuzaid M, et al.
 Comparing Validity and Diagnostic
 Accuracy of Clarke's Angle and Foot
 Posture Index-6 to Determine Flexible
 Flatfoot in Adolescents: A Cross-Sectional
 Investigation. J Multidiscip Healthc
 2021;Volume 14:2705–2717.
 https://doi.org/10.2147/JMDH.S317439
- Kola I, Kola S, Frroku E, et al. Prevalence and Management of Nonspecific Low Back Pain in Physiotherapy Students. Journal of Medical - Clinical Research & Reviews 2021;5(10). http://dx.doi.org/10.33425/2639-944X.1237
- 20. Zahari Z, Arnuin NA, Mohd Fuhad AM, et al. Type of Sitting Posture and Low Back Pain among University Students. Environment-Behaviour Proceedings Journal 2023;8(24):247–252.
 - https://doi.org/10.21834/ebpj.v8i24.4683
- Smith DR, Leggat PA. Prevalence and Distribution of Musculoskeletal Pain Among Australian Medical Students. J Musculoskelet Pain 2007;15(4):39–46. https://doi.org/10.1300/J094v15n04_05
- 22. Yao W, Mai X, Luo C, et al. A Cross-Sectional Survey of Nonspecific Low Back Pain Among 2083 Schoolchildren in China. Spine (Phila Pa 1976) 2011;36(22):1885–1890. https://doi.org/10.1097/brs.0b013e3181f aadea
- 23. Khamis S, Yizhar Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture 2007;25(1):127–134. https://doi.org/10.1016/j.gaitpost.2006.0 2.005
- 24. Yazdani F, Razeghi M, Karimi MT, et al. The influence of foot hyperpronation on pelvic biomechanics during stance phase of the gait: A biomechanical simulation study.

- Proc Inst Mech Eng H 2018;232(7):708–717. https://doi.org/10.1177/09544119187780
- https://doi.org/10.1177/09544119187780 77
- 25. Jentzsch T, Geiger J, Bouaicha S, et al. Increased pelvic incidence may lead to arthritis and sagittal orientation of the facet joints at the lower lumbar spine. BMC Med Imaging 2013;13(1):34. https://doi.org/10.1186/1471-2342-13-34
- 26. Goradia R, Shimpi A. Factors contributing to low back pain in workers involved in prolonged standing occupational requirements. International Journal of Occupational and Environmental Safety 2023;7(1):1–13. https://doi.org/10.24840/2184-0954-007-001-001904
- 27. Almutairi AF, BaniMustafa A, Bin Saidan T, et al. The Prevalence and Factors Associated with Low Back Pain Among People with Flat Feet. Int J Gen Med 2021;Volume 14:3677— 3685. https://doi.org/10.2147/IJGM.S321653
- 28. Amoozadeh F, Kazemian G, Rasi AM, et al. Surveying The Relationship Between Flatfoot and Chronic Mechanical Low Back Pain. 2015. 5(1). https://www.researchgate.net/publication/323826266
- 29. Moezy A, Malai S, Dadgostar H. The correlation between mechanical low back pain and foot overpronation in patients referred to Hazrat Rasool Hospital. Pars of Jahrom University of Medical Sciences 2016;14(4):51–61.

https://doi.org/10.29252/JMJ.14.4.51