Future Application of Oncolytic Viruses for Cancer Treatment

Jevon Aaron Lesmana, Juandy Jo

Abstract


Cancer treatments have developed over the years. A particular improvement is the utilization of oncolytic viruses to treat cancers. Oncolytic viruses are one of the immunotherapeutic tools that potentially could provide good results and benefits to the patients. Oncolytic viruses could mediate antitumor effects. Indeed, the connection between viral infections and cancer treatment have been reported historically. It is known that oncolytic viruses prefer to infect cancer cells rather than normal cells, resulting in the presentation of tumor-associated antigens to the immune system, boosting immunological activity in the tumor microenvironment, as well as assisting in the expression of inflammatory and immunomodulatory cytokines. Oncolytic viruses are a novel regimen in the cancer therapy, in which knowledge and technology of utilizing oncolytic viruses to treat cancer are still evolving. Importantly, clinical trials demonstrated that the viruses were well tolerated by cancer patients. Considering its potency and prospect, oncolytic viral treatments could be a useful additional tool for cancer therapy.


Keywords


Cancer; Oncolytic viruses; Immunotherapy



DOI: http://dx.doi.org/10.19166/med.v10i3.7037

Full Text:

PDF

References


1. International Agency for Research on Cancer. Cancer Today [Internet]. 2020 [cited 2022 May 1]. Available from: https://gco.iarc.fr/today/home

2. World Health Organization. Cancer [Internet]. 2022 [cited 2022 May 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer

3. Hemminki O, dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. Journal of Hematology & Oncology. 2020 Dec 29;13(1):84. https://doi.org/10.1186/s13045-020-00922-1

4. Gratwohl A. Hematopoietic Stem Cell Transplantation<subtitle>A Global Perspective</subtitle> JAMA. 2010 Apr 28;303(16):1617. https://doi.org/10.1001/jama.2010.491

5. Hemminki O, Hemminki A. A century of oncolysis evolves into oncolytic immunotherapy. OncoImmunology. 2016 Feb 12;5(2):e1074377. https://doi.org/10.1080/2162402x.2015.1074377

6. Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P. Harnessing the Power of the Immune System to Target Cancer. Annual Review of Medicine. 2013 Jan 14;64(1):71–90. https://doi.org/10.1146/annurev-med-112311-083918

7. Jessy T. Immunity over inability: The spontaneous regression of cancer. Journal of Natural Science, Biology and Medicine. 2011;2(1):43. https://doi.org/10.4103%2F0976-9668.82318

8. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection – possibilities for cancer treatment. Anti-Cancer Drugs. 2016 Apr;27(4):269–77. https://doi.org/10.1097/cad.0000000000000337

9. Larson C, Oronsky B, Scicinski J, Fanger GR, Stirn M, Oronsky A, et al. Going viral: a review of replication-selective oncolytic adenoviruses. Oncotarget. 2015 Aug 21;6(24):19976–89. https://doi.org/10.18632%2Foncotarget.5116

10. Kelly E, Russell SJ. History of Oncolytic Viruses: Genesis to Genetic Engineering. Molecular Therapy. 2007 Apr;15(4):651–9. https://doi.org/10.1038/sj.mt.6300108

11. Desjardins A, Vlahovic G, Friedman HS. Vaccine Therapy, Oncolytic Viruses, and Gliomas. Oncology (Williston Park). 2016 Mar;30(3):211–8.

12. Cook M, Chauhan A. Clinical Application of Oncolytic Viruses: A Systematic Review. International Journal of Molecular Sciences. 2020 Oct 12;21(20):7505. https://doi.org/10.3390/ijms21207505

13. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nature Reviews Drug Discovery. 2015 Sep 1;14(9):642–62. https://doi.org/10.1038/nrd4663

14. Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt’s essential immunology. Wiley Blackwell; 2017.

15. Cooper GM. The cell: A molecular approach. Sinauer associates, Oxford University Press; 2019.

16. Li L, Liu S, Han D, Tang B, Ma J. Delivery and Biosafety of Oncolytic Virotherapy. Frontiers in Oncology. 2020 Apr 16;10. https://doi.org/10.3389/fonc.2020.00475

17. Bischoff JR, Samuel CE. Mechanism of interferon action activation of the human P1/eIF-2α protein kinase by individual reovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology. 1989 Sep;172(1):106–15. https://doi.org/10.1016/0042-6822(89)90112-8

18. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature. 2003 Jul 16;424(6948):516–23. https://doi.org/10.1038/nature01850

19. Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study. Frontiers in Immunology. 2019 Aug 7;10. https://doi.org/10.3389%2Ffimmu.2019.01848

20. Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, et al. Oncolytic virus therapy in cancer: A current review. World Journal of Virology. 2021 Sep 25;10(5):229–55. https://doi.org/10.5501%2Fwjv.v10.i5.229

21. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M, et al. Oncolytic Adenovirus Coding for Granulocyte Macrophage Colony-Stimulating Factor Induces Antitumoral Immunity in Cancer Patients. Cancer Research. 2010 Jun 1;70(11):4297–309. https://doi.org/10.1158/0008-5472.can-09-3567

22. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback DG. Coxsackievirus–adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Therapy. 2001 Mar 1;8(3):168–75. https://doi.org/10.1038/sj.cgt.7700284

23. Liapis H, Adler LM, Wick MR, Rader JS. Expression of αvβ3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Human Pathology. 1997 Apr;28(4):443–9. https://doi.org/10.1016/s0046-8177(97)90033-2

24. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. Journal of Clinical Oncology. 2018 May 10;36(14):1419–27. https://doi.org/10.1200/jco.2017.75.8219

25. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy. 2003 Feb 1;10(4):292–303. https://doi.org/10.1038/sj.gt.3301885

26. Poppers J, Mulvey M, Khoo D, Mohr I. Inhibition of PKR Activation by the Proline-Rich RNA Binding Domain of the Herpes Simplex Virus Type 1 Us11 Protein. Journal of Virology. 2000 Dec;74(23):11215–21. https://doi.org/10.1128%2Fjvi.74.23.11215-11221.2000

27. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 2001 Oct 15;61(20):7464–72.

28. Tomazin R, van Schoot NEG, Goldsmith K, Jugovic P, Sempé P, Früh K, et al. Herpes Simplex Virus Type 2 ICP47 Inhibits Human TAP but Not Mouse TAP. Journal of Virology. 1998 Mar;72(3):2560–3. https://doi.org/10.1128/jvi.72.3.2560-2563.1998

29. Liang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Current Cancer Drug Targets. 2018 Jan 15;18(2):171–6. https://doi.org/10.2174/1568009618666171129221503

30. Toda M, Martuza RL, Rabkin SD. Tumor Growth Inhibition by Intratumoral Inoculation of Defective Herpes Simplex Virus Vectors Expressing Granulocyte–Macrophage Colony-Stimulating Factor. Molecular Therapy. 2000 Oct;2(4):324–9. https://doi.org/10.1006/mthe.2000.0130

31. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WSM. Tumor-Specific, Replication-Competent Adenovirus Vectors Overexpressing the Adenovirus Death Protein. Journal of Virology. 2000 Jul;74(13):6147–55. https://doi.org/10.1128%2Fjvi.74.13.6147-6155.2000

32. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J, et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res. 2003 Nov 1;63(21):7497–506. https://doi.org/10.1038/mt.sj.6300120

33. Morrison J, Briggs SS, Green N, Fisher K, Subr V, Ulbrich K, et al. Virotherapy of Ovarian Cancer With Polymer-cloaked Adenovirus Retargeted to the Epidermal Growth Factor Receptor. Molecular Therapy. 2008 Feb;16(2):244–51. https://doi.org/10.1038/sj.mt.6300363

34. O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, et al. PEGylation of Adenovirus with Retention of Infectivity and Protection from Neutralizing Antibody in Vitro and in Vivo. Human Gene Therapy. 1999 May 20;10(8):1349–58. https://doi.org/10.1089/10430349950018021

35. Tesfay MZ, Kirk AC, Hadac EM, Griesmann GE, Federspiel MJ, Barber GN, et al. PEGylation of Vesicular Stomatitis Virus Extends Virus Persistence in Blood Circulation of Passively Immunized Mice. Journal of Virology. 2013 Apr;87(7):3752–9. https://doi.org/10.1128/jvi.02832-12

36. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E, et al. Mesenchymal Stem Cell Carriers Protect Oncolytic Measles Viruses from Antibody Neutralization in an Orthotopic Ovarian Cancer Therapy Model. Clinical Cancer Research. 2009 Dec 1;15(23):7246–55. https://doi.org/10.1158/1078-0432.ccr-09-1292

37. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R. Cell Carriers for Oncolytic Viruses: Fed Ex for Cancer Therapy. Molecular Therapy. 2009 Oct;17(10):1667–76. https://doi.org/10.1038%2Fmt.2009.194

38. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Science. 2016 Oct 9;107(10):1373–9. https://doi.org/10.1111%2Fcas.13027

39. Hu PY, Fan XM, Zhang YN, Wang SB, Wan WJ, Pan HY, et al. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Applied Microbiology and Biotechnology. 2020 Oct 20;104(19):8231–42. https://doi.org/10.1007/s00253-020-10802-w

40. Reale A, Vitiello A, Conciatori V, Parolin C, Calistri A, Palù G. Perspectives on immunotherapy via oncolytic viruses. Infectious Agents and Cancer. 2019 Dec 11;14(1):5. https://doi.org/10.1186%2Fs13027-018-0218-1

41. Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. In 2016. p. 241–83. https://doi.org/10.1007/978-94-017-7555-7_5

42. Bai Y, Hui P, Du X, Su X. Updates to the antitumor mechanism of oncolytic virus. Thoracic Cancer. 2019 May 22;10(5):1031–5. https://doi.org/10.1111%2F1759-7714.13043

43. Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology. 2015 Jun 10;33(17):1974–82. https://doi.org/10.1200/jco.2014.59.4358

44. Chaurasiya S, Fong Y, Warner SG. Oncolytic Virotherapy for Cancer: Clinical Experience. Biomedicines. 2021 Apr 13;9(4):419. https://doi.org/10.3390/biomedicines9040419

45. Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. European Journal of Pharmacology. 2018 Oct;837:117–26. https://doi.org/10.1016/j.ejphar.2018.08.042

46. Wei D, Xu J, Liu XY, Chen ZN, Bian H. Fighting Cancer with Viruses: Oncolytic Virus Therapy in China. Human Gene Therapy. 2018 Feb;29(2):151–9. https://doi.org/10.1089/hum.2017.212

47. Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. Journal for ImmunoTherapy of Cancer. 2019 Dec 6;7(1):145. https://doi.org/10.1186%2Fs40425-019-0623-z


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jevon Aaron Lesmana, Juandy Jo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License

MEDICINUS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © Fakultas Kedokteran | Universitas Pelita Harapan | Lippo Karawaci, Tangerang, Indonesia, 15811 . All rights reserved. p-ISSN 1978-3094 | e-ISSN 2622-6995