Understanding Tsetse Fly (Glossina morsitans) Behavior through its Genome

Authors

  • Kristin Talia Marbun Department of Biology, Faculty of Science & Technology, Universitas Pelita Harapan, Tangerang, Banten
  • Satya Nugroho Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Cibinong, West Java
  • Juandy Jo Department of Biology, Faculty of Science & Technology, Universitas Pelita Harapan, Tangerang, Banten & Mochtar Riady Institute for Nanotechnology, Tangerang, Banten, Indonesia

DOI:

https://doi.org/10.19166/med.v10i3.7036

Keywords:

African trypanosomiasis, Whole-genome sequence, Symbionts, Vector control

Abstract

Glossina morsitans (G. morsitans), commonly known as tsetse fly, have caused public health concerns throughout the years. G. morsitans is the vector for Trypanosoma brucei (T. brucei), the parasite responsible for causing the deadly African sleeping disease (African trypanosomiasis). Researchers have searched for ways to contain this disease, but to little avail. Fortunately, new advances in sequencing methods have given researchers a new opportunity to win the war against the disease. The whole-genome sequence of G. morsitans provides essential data regarding involved genes that transmits T. brucei to humans. Information about those unique genes facilitates researchers to create new methods to prevent G. morsitans from becoming the vector of T. brucei, enabling the containment of this disease. With this, we review the unique genes in the G. morsitans genome, such as those that contribute to blood-feeding ability, establish a relationship with symbionts, and G. morsitans unique sensory genes, with an expectation that it would enhance our knowledge of G. morsitans as the vector for parasites causing African trypanosomiasis.

References

1. Attardo G, Abila P, Auma J, Baumann A, Benoit J, Brelsfoard C et al. Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis. Science. 2014; 344 (6182): 380-386. https://doi.org/10.1126/science.1249656

2. Fairlamb A, Horn D. Melarsoprol Resistance in African Trypanosomiasis. Trends in Parasitology. 2018; 34(6): 481-492. https://doi.org/10.1016/j.pt.2018.04.002

3. Bouteille B, Buguet A. The detection and treatment of human African trypanosomiasis. Research and Reports in Tropical Medicine. 2012;3: 35-45. https://doi.org/10.2147%2FRRTM.S24751

4. Centers for Disease Control and Prevention. Trypanosomiasis, African. Available on https://www.cdc.gov/dpdx/trypanosomiasisafrican/index.html cited Jan 2022.

5. Kennedy P. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). The Lancet Neurology. 2013;12(2):186-194. https://doi.org/10.1016/s1474-4422(12)70296-x

6. Ponte-Sucre A. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction. Frontiers in Microbiology. 2016;7. https://doi.org/10.3389/fmicb.2016.02126

7. Checchi F, Funk S, Chandramohan D, Chappuis F, Haydon D. The impact of passive case detection on the transmission dynamics of gambiense Human African Trypanosomiasis. PLOS Neglected Tropical Diseases. 2018;12(4): e0006276. https://doi.org/10.1371/journal.pntd.0006276

8. Snijders R, Fukinsia A, Claeys Y, Hasker E, Mpanya A, Miaka E et al. Costs and Outcomes of Integrated Human African Trypanosomiasis Surveillance System Using Rapid Diagnostic Tests, Democratic Republic of the Congo. Emerging Infectious Diseases. 2021;27(8):2144-2153. https://doi.org/10.3201%2Feid2708.202399

9. Franco J, Cecchi G, Priotto G, Paone M, Diarra A, Grout L et al. Monitoring the elimination of human African trypanosomiasis: Update to 2016. PLOS Neglected Tropical Diseases. 2020;14(5):e0008261. https://doi.org/10.1371%2Fjournal.pntd.0008261

10. Jamonneau V, Camara O, Ilboudo H, Peylhard M, Koffi M, Sakande H et al. Accuracy of Individual Rapid Tests for Serodiagnosis of Gambiense Sleeping Sickness in West Africa. PLOS Neglected Tropical Diseases. 2015; 9(2): e0003480. https://doi.org/10.1371/journal.pntd.0003480

11. Ooi C, Haines L, Southern D, Lehane M, Acosta-Serrano A. Tsetse GmmSRPN10 Has Anti-complement Activity and Is Important for Successful Establishment of Trypanosome Infections in the Fly Midgut. PLoS Neglected Tropical Diseases. 2015;9(1):e3448. https://doi.org/10.1371%2Fjournal.pntd.0003448

12. Matetovici I, Caljon G, Van Den Abbeele J. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics. 2016;17(1). https://doi.org/10.1186%2Fs12864-016-3283-0

13. Caljon G, Ridder K, Stijlemans B, Coosemans M, Magez S, De Baetselier P et al. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity. PLoS ONE. 2012;7(10):e47233. https://doi.org/10.1371%2Fjournal.pone.0047233

14. Calisto B, Ripoll-Rozada J, Dowman L, Franck C, Agten S, Parker B et al. Sulfotyrosine-Mediated Recognition of Human Thrombin by a Tsetse Fly Anticoagulant Mimics Physiological Substrates. Cell Chemical Biology. 2021; 28(1): 26-33.e8. https://doi.org/10.1016/j.chembiol.2020.10.002

15. Krystel-Whittemore M, Dileepan K, Wood J. Mast Cell: A Multi-Functional Master Cell. Frontiers in Immunology. 2016;6(6): 620. https://doi.org/10.3389/fimmu.2015.00620

16. Nnko H, Ngonyoka A, Salekwa L, Estes A, Hudson P, Gwakisa P et al. Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania. Journal of Vector Ecology. 2017; 42(1): 24-33. https://doi.org/10.1111/jvec.12236

17. Wang J, Weiss B, Aksoy S. Tsetse fly microbiota: form and function. Frontiers in Cellular and Infection Microbiology. 2013;29(3): 69. https://doi.org/10.3389/fcimb.2013.00069

18. Geiger A, Ponton F, Simo G. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. The ISME Journal. 2014; 9(7): 1496-1507. https://doi.org/10.1038%2Fismej.2014.236

19. Myllymäki H, Valanne S, Rämet M. The Drosophila Imd Signaling Pathway. The Journal of Immunology. 2014;192(8):3455-3462. https://doi.org/10.4049/jimmunol.1303309

20. Mugnier M, Stebbins C, Papavasiliou F. Masters of Disguise: Antigenic Variation and the VSG Coat in Trypanosoma brucei. PLOS Pathogens. 2016;12(9): e1005784. https://doi.org/10.1371/journal.ppat.1005784

21. Alfituri O, Quintana J, MacLeod A, Garside P, Benson R, Brewer J et al. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Frontiers in Immunology. 2020;11. https://doi.org/10.3389%2Ffimmu.2020.01250

22. Lindh J, Goswami P, Blackburn R, Arnold S, Vale G, Lehane M et al. Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes. PLoS Neglected Tropical Diseases. 2012; 6(5): e1661. https://doi.org/10.1371%2Fjournal.pntd.0001661

23. Santer R. A Colour Opponent Model That Explains Tsetse Fly Attraction to Visual Baits and Can Be Used to Investigate More Efficacious Bait Materials. PLoS Neglected Tropical Diseases. 2014; 8(12): e3360. https://doi.org/10.1371/journal.pntd.0003360

Downloads

Published

2023-06-12

Issue

Section

Clinical Research