Understanding Tsetse Fly (Glossina morsitans) Behavior through its Genome
DOI:
https://doi.org/10.19166/med.v10i3.7036Keywords:
African trypanosomiasis, Whole-genome sequence, Symbionts, Vector controlAbstract
Glossina morsitans (G. morsitans), commonly known as tsetse fly, have caused public health concerns throughout the years. G. morsitans is the vector for Trypanosoma brucei (T. brucei), the parasite responsible for causing the deadly African sleeping disease (African trypanosomiasis). Researchers have searched for ways to contain this disease, but to little avail. Fortunately, new advances in sequencing methods have given researchers a new opportunity to win the war against the disease. The whole-genome sequence of G. morsitans provides essential data regarding involved genes that transmits T. brucei to humans. Information about those unique genes facilitates researchers to create new methods to prevent G. morsitans from becoming the vector of T. brucei, enabling the containment of this disease. With this, we review the unique genes in the G. morsitans genome, such as those that contribute to blood-feeding ability, establish a relationship with symbionts, and G. morsitans unique sensory genes, with an expectation that it would enhance our knowledge of G. morsitans as the vector for parasites causing African trypanosomiasis.References
1. Attardo G, Abila P, Auma J, Baumann A, Benoit J, Brelsfoard C et al. Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis. Science. 2014; 344 (6182): 380-386. https://doi.org/10.1126/science.1249656
2. Fairlamb A, Horn D. Melarsoprol Resistance in African Trypanosomiasis. Trends in Parasitology. 2018; 34(6): 481-492. https://doi.org/10.1016/j.pt.2018.04.002
3. Bouteille B, Buguet A. The detection and treatment of human African trypanosomiasis. Research and Reports in Tropical Medicine. 2012;3: 35-45. https://doi.org/10.2147%2FRRTM.S24751
4. Centers for Disease Control and Prevention. Trypanosomiasis, African. Available on https://www.cdc.gov/dpdx/trypanosomiasisafrican/index.html cited Jan 2022.
5. Kennedy P. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). The Lancet Neurology. 2013;12(2):186-194. https://doi.org/10.1016/s1474-4422(12)70296-x
6. Ponte-Sucre A. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction. Frontiers in Microbiology. 2016;7. https://doi.org/10.3389/fmicb.2016.02126
7. Checchi F, Funk S, Chandramohan D, Chappuis F, Haydon D. The impact of passive case detection on the transmission dynamics of gambiense Human African Trypanosomiasis. PLOS Neglected Tropical Diseases. 2018;12(4): e0006276. https://doi.org/10.1371/journal.pntd.0006276
8. Snijders R, Fukinsia A, Claeys Y, Hasker E, Mpanya A, Miaka E et al. Costs and Outcomes of Integrated Human African Trypanosomiasis Surveillance System Using Rapid Diagnostic Tests, Democratic Republic of the Congo. Emerging Infectious Diseases. 2021;27(8):2144-2153. https://doi.org/10.3201%2Feid2708.202399
9. Franco J, Cecchi G, Priotto G, Paone M, Diarra A, Grout L et al. Monitoring the elimination of human African trypanosomiasis: Update to 2016. PLOS Neglected Tropical Diseases. 2020;14(5):e0008261. https://doi.org/10.1371%2Fjournal.pntd.0008261
10. Jamonneau V, Camara O, Ilboudo H, Peylhard M, Koffi M, Sakande H et al. Accuracy of Individual Rapid Tests for Serodiagnosis of Gambiense Sleeping Sickness in West Africa. PLOS Neglected Tropical Diseases. 2015; 9(2): e0003480. https://doi.org/10.1371/journal.pntd.0003480
11. Ooi C, Haines L, Southern D, Lehane M, Acosta-Serrano A. Tsetse GmmSRPN10 Has Anti-complement Activity and Is Important for Successful Establishment of Trypanosome Infections in the Fly Midgut. PLoS Neglected Tropical Diseases. 2015;9(1):e3448. https://doi.org/10.1371%2Fjournal.pntd.0003448
12. Matetovici I, Caljon G, Van Den Abbeele J. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics. 2016;17(1). https://doi.org/10.1186%2Fs12864-016-3283-0
13. Caljon G, Ridder K, Stijlemans B, Coosemans M, Magez S, De Baetselier P et al. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity. PLoS ONE. 2012;7(10):e47233. https://doi.org/10.1371%2Fjournal.pone.0047233
14. Calisto B, Ripoll-Rozada J, Dowman L, Franck C, Agten S, Parker B et al. Sulfotyrosine-Mediated Recognition of Human Thrombin by a Tsetse Fly Anticoagulant Mimics Physiological Substrates. Cell Chemical Biology. 2021; 28(1): 26-33.e8. https://doi.org/10.1016/j.chembiol.2020.10.002
15. Krystel-Whittemore M, Dileepan K, Wood J. Mast Cell: A Multi-Functional Master Cell. Frontiers in Immunology. 2016;6(6): 620. https://doi.org/10.3389/fimmu.2015.00620
16. Nnko H, Ngonyoka A, Salekwa L, Estes A, Hudson P, Gwakisa P et al. Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania. Journal of Vector Ecology. 2017; 42(1): 24-33. https://doi.org/10.1111/jvec.12236
17. Wang J, Weiss B, Aksoy S. Tsetse fly microbiota: form and function. Frontiers in Cellular and Infection Microbiology. 2013;29(3): 69. https://doi.org/10.3389/fcimb.2013.00069
18. Geiger A, Ponton F, Simo G. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. The ISME Journal. 2014; 9(7): 1496-1507. https://doi.org/10.1038%2Fismej.2014.236
19. Myllymäki H, Valanne S, Rämet M. The Drosophila Imd Signaling Pathway. The Journal of Immunology. 2014;192(8):3455-3462. https://doi.org/10.4049/jimmunol.1303309
20. Mugnier M, Stebbins C, Papavasiliou F. Masters of Disguise: Antigenic Variation and the VSG Coat in Trypanosoma brucei. PLOS Pathogens. 2016;12(9): e1005784. https://doi.org/10.1371/journal.ppat.1005784
21. Alfituri O, Quintana J, MacLeod A, Garside P, Benson R, Brewer J et al. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Frontiers in Immunology. 2020;11. https://doi.org/10.3389%2Ffimmu.2020.01250
22. Lindh J, Goswami P, Blackburn R, Arnold S, Vale G, Lehane M et al. Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes. PLoS Neglected Tropical Diseases. 2012; 6(5): e1661. https://doi.org/10.1371%2Fjournal.pntd.0001661
23. Santer R. A Colour Opponent Model That Explains Tsetse Fly Attraction to Visual Baits and Can Be Used to Investigate More Efficacious Bait Materials. PLoS Neglected Tropical Diseases. 2014; 8(12): e3360. https://doi.org/10.1371/journal.pntd.0003360
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website). The final published PDF should be used and bibliographic details that credit the publication in this journal should be included.