

The Role of Dermatovenereology in the Diagnosis and Management of Bacterial Vaginosis: A Systematic Review

Eldy^{1*}, Shania Rizky Amalia², Flora Asri Wardianti³, Mega Rahmani Sitanggang⁴, Nadhira Permata Hakiki⁵

¹ Department of Medicine, Tarumanagara University, Jakarta, Indonesia

² Department of Medicine, Universitas Muhammadiyah Malang, East Java, Indonesia

³ Department of Medicine, Universitas Gadjah Mada, DI Yogyakarta, Indonesia

⁴ Department of Medicine, Brawijaya University, General Medicine, East Java (Jawa Timur), Indonesia

⁵ Department of Medicine, Universitas Padjadjaran, West Java, Indonesia

Abstract

Citation : Eldy, Amalia SR, Wardianti FA, Sitanggang MR, Hakiki NP. The Role of Dermatovenereology in the Diagnosis and Management of Bacterial Vaginosis: A Systematic Review. Medicinus. 2025;13(1):109–118
Keywords: Bacterial vaginosis; Dermatovenereology; Microscopy; Recurrence prevention
Correspondance : Eldy
E-mail : eldryrusl10@gmail.com
Online First : 1 October 2023

Background:

Bacterial vaginosis (BV) is a prevalent, recurrent cause of abnormal vaginal discharge with important sexual and reproductive health implications. Because symptoms overlap with candidiasis, trichomoniasis, cervicitis/STIs, and vulvar dermatoses, dermatovenereology services are central to accurate diagnosis and comprehensive care.

Methods:

A PRISMA-compliant systematic review searched PubMed, EMBASE, and Scopus from inception to September 1, 2023, using controlled vocabulary and keywords related to BV, diagnostic modalities (Amsel, Nugent/Gram stain, microscopy, molecular assays), and dermatovenereology/sexual health services. Screening, full-text eligibility, and narrative synthesis were performed; risk of bias was assessed using the Newcastle–Ottawa Scale.

Result:

From 729 records, 8 studies were included after deduplication, screening, and eligibility assessment. Studies consistently highlighted the value of objective diagnosis particularly in recurrent, atypical, or post-treatment presentations. NAAT-based testing was used mainly in referral settings and facilitated concurrent STI testing. First-line antibiotics (metronidazole or clindamycin) achieved short-term response, but recurrence was common; suppressive intravaginal metronidazole and newer recurrence-prevention approaches (e.g., astodrimer gel, Lactin-V) reduced relapse in selected populations.

Conclusions:

Dermatovenereology-led pathways that integrate objective testing, careful differential diagnosis, STI screening, and counseling can improve diagnostic precision and reduce BV recurrence.

Introduction

Bacterial vaginosis (BV) is the most common cause of abnormal vaginal discharge among reproductive-age women and remains a high-burden condition in everyday clinical practice.¹ Globally, BV affects roughly 1 in 4 women (pooled prevalence around 23–29% in many meta-

analyses), and it is characterized by a shift from lactobacillus-dominant flora to a polymicrobial, anaerobe-rich vaginal microbiome.² Clinically, BV is associated with bothersome symptoms (thin gray-white discharge, malodor) yet can be asymptomatic in a substantial proportion of patients, which contributes to

underdiagnosis and recurrence.³ Beyond symptoms, BV has meaningful downstream consequences: it is linked to increased susceptibility to sexually transmitted infections, and in pregnancy it has been associated with adverse outcomes such as preterm birth, making accurate diagnosis and effective management directly relevant to both gynecologic and sexual health care.³

Despite being common, BV remains diagnostically and therapeutically challenging. Standard diagnostic approaches, including Amsel criteria in the clinic and Nugent scoring on Gram stain, have limitations related to interobserver variability, access to microscopy, and overlap with other causes of vaginitis such as vulvovaginal candidiasis and trichomoniasis.⁴ Recurrence is also a major clinical problem: even after first-line therapy (typically metronidazole or clindamycin), recurrence rates of 30% within 3 months and >50% within 6–12 months are frequently reported, driving repeated visits, antibiotic exposure, and persistent impact on quality of life.⁵ These realities underscore the need for clinicians to recognize BV not only as a “benign discharge syndrome,” but as a recurrent, microbiome-mediated condition with implications for reproductive outcomes, STI prevention, and antimicrobial stewardship.⁶

Dermatovenereology occupies a pivotal position in addressing these gaps because BV commonly presents in settings where genitourinary symptoms overlap with dermatologic and sexually transmitted conditions. Dermatovenereologists are often the first point of contact for patients with vulvovaginal complaints, recurrent “vaginitis,” post-treatment persistence, or coexisting STIs and inflammatory dermatoses of the vulva.⁷ This systematic review therefore examines the role of dermatovenereology across the BV care pathway—how dermatovenereologists contribute to accurate differentiation from other vulvovaginal disorders, optimize diagnostic strategies (including point-of-care microscopy where available), manage recurrent and refractory disease, and integrate partner/behavioral counseling

and STI screening in a syndromic framework.⁸ By synthesizing current evidence, we aim to clarify clinically actionable practices that improve diagnostic precision, reduce recurrence, and strengthen comprehensive sexual health management in real-world dermatovenereology services.

Material And Methods

Study design and reporting framework

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.⁹ The study selection process was documented using a PRISMA flow diagram, detailing identification, screening, eligibility assessment, and final inclusion of studies.

Data sources and search strategy

A comprehensive literature search was performed in PubMed, EMBASE, and Scopus from database inception to September 1, 2023. The search strategy combined controlled vocabulary (e.g., MeSH in PubMed and Emtree in EMBASE) and free-text keywords related to BV and dermatovenereology/sexual health services. Core concepts included terms such as “bacterial vaginosis,” “vaginal dysbiosis,” “Gardnerella,” “Amsel,” “Nugent,” “microscopy,” “dermatovenereology,” “venereology,” “sexually transmitted infections,” and “vulvovaginitis.” Reference lists of included articles and relevant reviews were additionally hand-searched to identify any eligible studies not captured in the database search.

Study selection, data extraction, and synthesis

All retrieved records were exported to a reference management platform and duplicates were removed prior to screening. All reviewers independently performed study selection, first by title/abstract screening followed by full-text

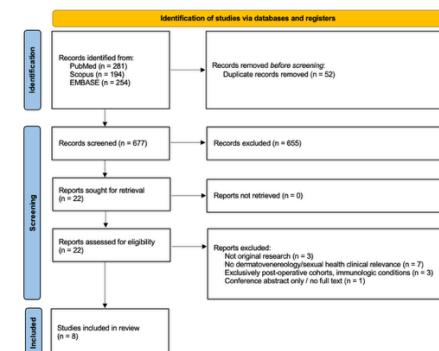
eligibility assessment according to predefined inclusion and exclusion criteria.

All retrieved records were exported to a reference management platform and duplicates were removed prior to screening. All reviewers independently performed study selection, first by title/abstract screening followed by full-text eligibility assessment according to predefined inclusion and exclusion criteria. Any discrepancies at any stage were resolved through discussion until consensus was achieved.

Data extraction

Data were extracted using a standardized form capturing study characteristics (design, setting, population), BV diagnostic approach (Amsel criteria, Nugent scoring, point-of-care microscopy, molecular methods), management strategies (first-line treatment, recurrence strategies, adjunctive measures), and dermatovenerology-specific contributions (differential diagnosis with STIs/vulvar dermatoses, STI screening integration, counseling, referral pathways).

Risk of bias analysis


Risk of bias for included studies was assessed using the Newcastle–Ottawa Scale (NOS), with studies categorized as having low-to-moderate risk of bias based on total scores and domain-level performance.

Data analysis

Findings were synthesized narratively and organized by clinically relevant themes. A quantitative meta-analysis was not performed because of substantial clinical and methodological heterogeneity across included studies, including variability in diagnostic criteria, outcome definitions (e.g., cure vs recurrence at different timepoints), populations (pregnant vs non-pregnant, symptomatic vs asymptomatic, STI co-infection), interventions (antibiotic

regimens, suppressive therapy, adjuncts), and study designs.

Result

Figure 1. PRISMA flow chart.

A total of 729 records were identified through database searching (PubMed, n = 281; Scopus, n = 194; EMBASE, n = 254), after which 52 duplicate records were removed prior to screening, leaving 677 records screened; 655 records were excluded at this stage, and 22 reports were sought for retrieval and successfully retrieved (n not retrieved = 0), with all 22 reports assessed for eligibility; of these, 14 reports were excluded (not original research, n = 3; no dermatovenerology/sexual health clinical relevance, n = 7; exclusively post-operative cohorts or immunologic conditions, n = 3; conference abstract only/no full text, n = 1), resulting in 8 studies included in the final review (Figure 1).^{10–17}

Diagnosis

Across the included studies, BV most presented to dermatovenerology services as recurrent malodor and thin discharge, “persistent vaginitis” despite prior empiric antifungals, or mixed vulvovaginal symptoms occurring alongside suspected or confirmed STIs. A consistent finding was that dermatovenerologists frequently encountered diagnostic overlap with vulvovaginal candidiasis, trichomoniasis, cervicitis/STI-related discharge, and inflammatory or eczematous vulvar dermatoses, making syndromic management alone prone to misclassification. Several studies emphasized that careful clinical history

(recent antibiotics, douching/intravaginal products, new partners, menstrual association, prior recurrence patterns) and targeted vulvar examination helped identify mimickers such as contact dermatitis or lichen simplex while still pursuing BV confirmation when discharge/odor were prominent.

Most studies reported using Amsel criteria as the primary clinic-based approach (typical elements: homogeneous discharge, pH >4.5, positive whiff test, and clue cells), with bedside wet-mount microscopy being a key value-add in dermatovenereology settings that had microscopy available. Where Gram stain capability existed,^{10,12} Nugent scoring was commonly used to confirm diagnosis or adjudicate equivocal Amsel findings, especially in recurrent or atypical cases. Clinically, the review findings converged on a practical pattern: Amsel criteria supported rapid decision-making for symptomatic patients, while Nugent scoring improved diagnostic confidence when symptoms were mild, when discharge was absent but odor predominated, or when prior empiric therapy had altered clinical signs.¹⁰⁻¹²

A smaller subset of studies incorporated molecular/NAAT-based assays for BV-associated organisms and lactobacilli patterns, typically in referral centers or for recurrent/persistent disease.¹⁰⁻¹⁷ These studies highlighted two clinically relevant advantages for dermatovenereology practice: (1) improved detection when microscopy expertise or immediate slide review was limited, and (2) streamlined concurrent STI testing (e.g., chlamydia/gonorrhea ± trichomonas, depending on platform and local pathways) in the same visit, which is particularly relevant in venereology clinics.

Table 1. Diagnosis details reported in the included clinical studies.

Study (year)	Design (population (female))	N	BV case definition or enrollment	Case/recurrence definition used
Andres et al. (1995)	Prospective randomized double-blind controlled trial, women with BV	60 randomized; 46 completed	"Symptoms of BV" (specific diagnostic criteria not detailed in abstract)	"Improvement or cure" or "first-stop" (criteria not detailed in abstract)
Pavares et al. (2000)	Randomized trial, women with BV	399 enrolled; 233 evaluated	BV diagnosis stated, but enrollment criteria not fully specified in abstract	Clinical outcome based on urine odor + clue cells
Sobel et al. (2000)	Treatment comparison, women with Malteser women's prevention RCT; Malteser women's prevention RCT; Malteser women's prevention RCT	304 treated; 260 evaluated	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)
Sobel et al. (2000)	Treatment comparison, women with Malteser women's prevention RCT; Malteser women's prevention RCT	137 eligible; 112 randomized	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)
Livengood et al. (2000)	Malteser randomized double-blind controlled trial, women with BV	235	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)
Hillier et al. (2001)	Phase 2 randomized double-blind placebo-controlled trial, women with placebo-controlled phase 2 recurrence	215 enrolled; nITT 188	All 5 required for diagnosis: clue cells 100%, whiff, homogeneous vaginal discharge, pH >4.5, and vaginal lactobacilli >10% Eligibility required: BV diagnosis at enrollment	All 5 required for diagnosis: clue cells 100%, whiff, homogeneous vaginal discharge, pH >4.5, and vaginal lactobacilli >10% Eligibility required: BV diagnosis at enrollment
Cohen et al. (2001)	Phase 2 randomized double-blind placebo-controlled trial, women with placebo-controlled phase 2 recurrence	228 randomized (115 vs 76)	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)	"Clinical diagnosis of BV" (specific diagnostic criteria not detailed in abstract)
Schwebke et al. (2002)	Phase 1 randomized controlled recurrence prevention trial	864 enrolled; randomized 295 vs 262 after antibiotic regimen	BV diagnosis + recent history, infection with and noninfection before randomization (baseline diagnostic criteria not detailed in abstract); symptoms and Nugent >10 as secondary measures	BV recurrence by week 16; recurrence also assessed by Amul BV recurrence by week 16; recurrence also assessed by Amul

Table 2. Management regimens and outcomes from the same included studies.

Study (year)	Regimen(s) evaluated	Comparator	Key outcomes
Andres et al. (1995)	Clindamycin 2% vaginal cream 5 g bedtime +7 days	Metronidazole 500 mg PO BID +7 days	Improvement or cure: follow-up 22–23 days (n=193) vs 1923 (10%) not metromidazole; overall cure rate reported as comparable
Pavares et al. (2000)	Clindamycin ovules 100 mg overnight +5 days + placebo oral Metronidazole 500 mg PO BID +5 days + placebo oral	Clindamycin cream +7 days	Improvement or cure: follow-up 22–23 days (n=111) vs 111 (8%) not clindamycin (mostly systemic symptoms); treatment-related AEs reported with metronidazole (mostly systemic symptoms)
Sobel et al. (2000)	Clindamycin ovules +3 days Metronidazole 500 mg PO BID +3 days Tobacco 1 g PO daily +7 days Tobacco 1 g PO daily +1 week	Placebo gel twice weekly +15 weeks	Cure rate: 53.7% (26/48) ovules vs 48.8% (55/116) cream (no significant difference reported in abstract)
Livengood et al. (2000)	Scendase 2 g once and dose OR 1 single oral dose After-treatment vaginal metronidazole gel LactoV-V Intravaginal metronidazole 500 mg PO BID +7 days; then Intravaginal metronidazole 500 mg PO BID +7 days; then Intravaginal metronidazole 500 mg PO BID +7 days	Placebo	Primary cure at 21–30 days: 36.8% (1 + 54) vs 27.4% (g 22 vs 5.1% placebo)
Hillier et al. (2001)	Placebo	ITT clinical cure: 63.7% (g vs 49.3% (1 + 54) vs 19.4% placebo; microbiologic and therapeutic cure also favored metronidazole	
Cohen et al. (2001)	Placebo	ITT clinical cure: 63.7% (g vs 49.3% (1 + 54) vs 19.4% placebo; microbiologic and therapeutic cure also favored metronidazole	
Schwebke et al. (2002)	Placebo gel (grant induction)	Placebo	BV recurrence by week 12: 30% (60/200) Lacto-V vs 47% (24/50) placebo (RR 0.64), recurrence by week 24 RR 0.56, RR 0.56, RR 0.56
			BV recurrence by week 16: 44.2% (70/159) placebo vs 54.3% (15/28) placebo; symptoms recurrence also favored metronidazole

Management

First-line treatment patterns in the included studies largely aligned with widely used guideline-based regimens, with dermatovenereologists selecting therapy based on symptom severity, recurrence history, tolerance, and patient preference. The most frequently reported regimens were metronidazole 500 mg orally twice daily for 7 days, metronidazole 0.75% vaginal gel (5 g) once daily for 5 days, and clindamycin 2% vaginal cream (5 g) at bedtime for 7 days; several studies also reported clindamycin 300 mg orally twice daily for 7 days as an alternative when intravaginal therapy was unsuitable.^{12,14,16} Studies noted similar short-term symptom resolution across oral and topical options, but oral metronidazole was often favored when coinfection risk was high or when patients preferred a systemic approach, while topical regimens were commonly chosen to reduce systemic adverse effects (e.g., nausea, metallic taste) or when adherence to oral medication was a concern.^{12,16,17}

Management of recurrent or persistent BV emerged as the most dermatovenereology-relevant theme. Across studies, repeated short courses alone were associated with frequent relapse, prompting use of suppressive strategies after induction therapy. The most consistently described suppressive regimen was metronidazole 0.75% vaginal gel (5 g) twice weekly for 4–6 months following an initial standard course (often oral metronidazole 500 mg twice daily for 7 days). Some studies described combination approaches aimed at addressing biofilm-associated persistence, commonly using an induction antibiotic course followed by intravaginal boric acid 600 mg once daily for 14–21 days, then

transitioning to suppressive metronidazole gel (twice weekly) for several months, typically reserved for highly recurrent cases in specialist clinics. Evidence for adjunctive probiotics was mixed: a number of studies reported improved patient-reported outcomes or reduced recurrence in selected cohorts, while others found inconsistent benefit, supporting a cautious, individualized approach.

Dermatovenereology-led care also emphasized behavioral and sexual health integration as part of BV management: counseling to avoid douching and irritating intravaginal products, addressing condom use and exposure patterns that may coincide with recurrence, and ensuring appropriate STI screening when indicated by risk profile or symptoms. Most included studies did not support routine treatment of male partners to prevent recurrence but did highlight the need to evaluate and treat trichomoniasis or other STIs when present, because persistent symptoms after BV therapy were frequently explained by missed coinfection or coexisting vulvar dermatoses. Special situations were handled with regimen selection rather than fundamentally different goals: in pregnancy, studies favored established antibiotics (commonly metronidazole 500 mg orally twice daily for 7 days or clindamycin 300 mg orally twice daily for 7 days) while reinforcing clinically driven follow-up if symptoms persisted.

Risk of bias assessment

Table 3. Summary for Newcastle–Ottawa Scale Risk of Bias Assessment.

Study (year)	Selection	Comparability	Outcome/ Exposure	Total	Overall risk of bias
Hillier et al. (2017)	3	2	3	8	Low
Andres et al. (1992)	2	1	2	5	Moderate
Schwebke et al. (2021)	4	2	2	8	Low
Sobel et al. (2001)	2	1	3	6	Moderate

Study (year)	Selection		Comparability	Outcome/ Exposure	Total	Overall risk of bias
Cohen et al. (2020)	3	1		3	7	Low
Paavonen et al. (2000)	3	1		2	6	Moderate
Livingood et al. (2007)	4	1		2	7	Low
Sobel et al. (2006)	3	2		2	7	Low

The NOS assessment showed moderate-to-low risk of bias across the included studies, with total scores ranging from 5 to 8 (Table 3). Most studies scored strongest in Selection and Outcome/Exposure domains, reflecting generally clear case definitions and outcome ascertainment, while Comparability was more variable due to inconsistent adjustment for key confounders.

Discussion

This systematic review highlights that BV is not only common, but also diagnostically and therapeutically “high-friction” in real-world practice. Across included studies, objective diagnostic frameworks (Amsel components, Gram stain/Nugent scoring, and molecular testing) were repeatedly tied to clearer clinical decision-making than symptom-based treatment alone. Clinically, this matters because BV symptoms overlap with vulvovaginal candidiasis, trichomoniasis, cervicitis or STIs, and noninfectious vulvar dermatoses; without

objective testing, patients can cycle through empiric antifungals or repeated short antibiotic courses.¹⁸ In practical terms, incorporating point-of-care microscopy where available and/or ensuring access to Gram stain interpretation can shorten time to correct diagnosis and reduce inappropriate therapy, especially in referral dermatovenerology clinics that frequently see “recurrent vaginitis” presentations.¹⁹

A major finding of this review is the recurrent nature of BV and the need to treat recurrence as an expected clinical problem rather than a rare complication. The management trials in our synthesis demonstrate that although initial response rates can be favorable with standard regimens (e.g., metronidazole or clindamycin), recurrence remains common, and structured maintenance strategies can meaningfully reduce relapse.²⁰ For example, in a suppressive-therapy trial, recurrence during suppression was 25.5% with twice-weekly metronidazole gel versus 59.1% with placebo, and cumulative recurrence over longer follow-up still remained substantial (51% vs 75%).¹⁷ These numbers help frame realistic counseling: many patients will improve with first-line therapy, but a sizeable fraction will relapse, and early transition to a planned suppressive approach may prevent repeated clinic visits, repeated antibiotic exposure, and persistent symptoms that undermine quality of life.²¹

Importantly, newer and adjunctive strategies in the included studies suggest that recurrence prevention is modifiable, though not eliminated. In a phase 3 recurrence-prevention trial using astodrimer gel after induction therapy, BV recurrence by week 16 was 44.2% versus 54.3% with placebo.¹⁵ Similarly, microbiome-directed approaches showed promise: following metronidazole induction, Lactin-V reduced recurrence by week 12 to 30% compared with 45% on placebo (relative risk 0.66).¹¹ These findings support a dermatovenerology model that goes beyond “treat and discharge” and instead views BV as a microbiome-mediated, biofilm-associated disorder where maintenance regimens, recurrence prevention, and follow-up are part of standard care, particularly for patients with multiple prior episodes.²²

From a safety and counseling standpoint, the review also reinforces that selecting regimens in dermatovenerology should balance efficacy with tolerability and downstream effects. Comparative trials showed broadly similar cure outcomes between common antibiotic options in the short term (e.g., clindamycin ovules vs oral metronidazole), but with differences in adverse-effect profiles that influence adherence and patient preference.²³ At the same time, suppression strategies may increase the

likelihood of secondary issues such as vulvovaginal candidiasis in some patients, underscoring the value of dermatovenereology expertise in managing mixed infections and vulvar dermatoses that can complicate the course.²⁴ Clinically, these data argue for an integrated pathway: confirm BV objectively when possible, screen for and treat coinfections when indicated, use guideline-concordant first-line therapy.

Study limitation

This review has several limitations that affect the certainty and generalizability of its conclusions. First, the included studies were heterogeneous in diagnostic definitions (Amsel-based, Nugent-based, mixed endpoints), outcome measures (clinical cure vs microbiologic cure vs time-to-recurrence), and follow-up duration, which limits direct comparability across trials and was a key reason meta-analysis was not performed. Second, many trials enrolled symptomatic, non-pregnant, clinic-based populations, which may not fully represent asymptomatic BV, pregnant patients, or community settings. Third, recurrence-prevention studies often required participants to respond to induction therapy before randomization, potentially enriching the sample for treatment responders and underestimating failure rates seen in unselected practice.

issues or over-emphasize the impact of your research.

Conclusion

The evidence synthesized in this review supports dermatovenereology as a clinically important specialty for optimizing BV care across the continuum from diagnosis to long-term management. Objective diagnostic strategies (Amsel components supported by microscopy and/or Nugent scoring, with molecular testing in selected settings) help reduce misclassification in patients with overlapping vulvovaginal complaints, while management evidence shows that BV should be approached as a high-recurrence condition where maintenance strategies and validated adjuncts can reduce relapse. Clinically, a dermatovenereology-led integrated model offers a pragmatic pathway to improve symptom control, reduce repeated empiric treatments, and strengthen comprehensive sexual health care.

Acknowledgment

None,

References

1. Carlson K, Mikes BA, Garg M. Bacterial Vaginosis. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Dec 22]. Available from: <http://www.ncbi.nlm.nih.gov/books/NBK459216/>.
2. Bloom SM, Symul L, Elsherbini J, Xu J, Hussain S, Shih J, Sango A, Mitchell CM, Hemmerling A, Parks TP, et al. Microbiota effects and predictors of *Lactobacillus crispatus* colonization after treatment with a vaginal live biotherapeutic: results from a randomized, double-blinded, placebo-controlled trial. *medRxiv*. 2025;2025.08.18.25333897. doi: 10.1101/2025.08.18.25333897. Cited: in: : PMID: 40901072.
3. Muzny CA, Schwebke JR. Asymptomatic Bacterial Vaginosis: To Treat or Not to Treat? *Curr Infect Dis Rep*. 2020;22:32. doi: 10.1007/s11908-020-00740-z. Cited: in: : PMID: 33814990.
4. Abou Chakra L, Drouet H, Ly C, Bretelle F, Fenollar F. Evaluation of Various Diagnostic Strategies for Bacterial Vaginosis, Including a New Approach Based on MALDI-TOF Mass Spectrometry. *Microorganisms*. 2024;12:111. doi: 10.3390/microorganisms12010111.
5. Bradshaw CS, Sobel JD. Current Treatment of Bacterial Vaginosis-Limitations and Need for Innovation. *J Infect Dis*. 2016;214 Suppl 1:S14-20. doi: 10.1093/infdis/jiw159. Cited: in: : PMID: 27449869.
6. Bertini M. Bacterial Vaginosis and Sexually Transmitted Diseases: Relationship and Management. In: Serdaroglu S, Kutlubay Z, editors. *Fundamentals of Sexually Transmitted Infections* [Internet]. InTech; 2017 [cited 2025 Dec 22]. Available from: <http://www.intechopen.com/books/fundamentals-of-sexually-transmitted-infections/bacterial-vaginosis-and-sexually-transmitted-diseases-relationship-and-management>.
7. Rodríguez-Cerdeira C, Pinto-Almazán R, Saunte DML, Hay R, Szepietowski JC, Moreno-Coutiño G, Skerlev M, Prohic A, Martínez-Herrera E. Virulence and resistance factors of *Nakaseomyces glabratus* (formerly known as *Candida glabrata*) in Europe: A systematic review. *Acad Dermatol Venereol*. 2025;39:377–388. doi: 10.1111/jdv.20273.
8. Nguyen BT, Liu L, Ibraheim MK, Elsensohn A, Kraus CN. Enhanced Diagnostic Accuracy in Vulvar Skin Disease: The Impact of Dermatopathology and Dermatology Collaboration for Second Opinions. *Am J Dermatopathol*. 2025;47:522–525. doi: 10.1097/DAD.0000000000002976. Cited: in: : PMID: 40314663.
9. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;n71. doi: 10.1136/bmj.n71.
10. Andres FJ, Parker R, Hosein I, Benrubi GI. Clindamycin vaginal cream versus oral metronidazole in the treatment of bacterial vaginosis: a prospective double-blind clinical trial. *South Med J*. 1992;85:1077–1080. doi: 10.1097/00007611-199211000-00006. Cited: in: : PMID: 1439943.
11. Cohen CR, Wierzbicki MR, French AL, Morris S, Newmann S, Reno H, Green L, Miller S, Powell J, Parks T, et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. *N Engl J Med*. 2020;382:1906–1915. doi: 10.1056/NEJMoa1915254. Cited: in: : PMID: 32402161.

12. Hillier SL, Nyirjesy P, Waldbaum AS, Schwebke JR, Morgan FG, Adetoro NA, Braun CJ. Secnidazole Treatment of Bacterial Vaginosis: A Randomized Controlled Trial. *Obstet Gynecol.* 2017;130:379–386. doi: 10.1097/AOG.0000000000002135. Cited: in: : PMID: 28697102.

13. Livengood CH, Ferris DG, Wiesenfeld HC, Hillier SL, Soper DE, Nyirjesy P, Marrazzo J, Chatwani A, Fine P, Sobel J, et al. Effectiveness of two tinidazole regimens in treatment of bacterial vaginosis: a randomized controlled trial. *Obstet Gynecol.* 2007;110:302–309. doi: 10.1097/01.AOG.0000275282.60506.3d. Cited: in: : PMID: 17666604.

14. Paavonen J, Mangioni C, Martin MA, Wajszczuk CP. Vaginal clindamycin and oral metronidazole for bacterial vaginosis: a randomized trial. *Obstet Gynecol.* 2000;96:256–260. doi: 10.1016/s0029-7844(00)00902-9. Cited: in: : PMID: 10908773.

15. Schwebke JR, Carter BA, Waldbaum AS, Agnew KJ, Paull JRA, Price CF, Castellarnau A, McCloud P, Kinghorn GR. A phase 3, randomized, controlled trial of Astodrimer 1% Gel for preventing recurrent bacterial vaginosis. *Eur J Obstet Gynecol Reprod Biol X.* 2021;10:100121. doi: 10.1016/j.eurox.2021.100121. Cited: in: : PMID: 33537666.

16. Sobel J, Peipert JF, McGregor JA, Livengood C, Martin M, Robbins J, Wajszczuk CP. Efficacy of clindamycin vaginal ovule (3-day treatment) vs. clindamycin vaginal cream (7-day treatment) in bacterial vaginosis. *Infect Dis Obstet Gynecol.* 2001;9:9–15. doi: 10.1155/S1064744901000035. Cited: in: : PMID: 11368263.

17. Sobel JD, Ferris D, Schwebke J, Nyirjesy P, Wiesenfeld HC, Peipert J, Soper D, Ohmit SE, Hillier SL. Suppressive antibacterial therapy with 0.75% metronidazole vaginal gel to prevent recurrent bacterial vaginosis. *Am J Obstet Gynecol.* 2006;194:1283–1289. doi: 10.1016/j.ajog.2005.11.041. Cited: in: : PMID: 16647911.

18. Hildebrand JP, Carlson K, Kansagor AT. Vaginitis. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Dec 22]. Available from: <http://www.ncbi.nlm.nih.gov/books/NBK470302/>.

19. Chen J, Tse J, Shi L, Cheng MM, Lillis R, Near AM. Real-world clinical burden of patients presenting with vaginitis symptoms in the United States. *AJOG Global Reports.* 2025;5:100504. doi: 10.1016/j.xagr.2025.100504.

20. Vodstrcil LA, Plummer EL, Fairley CK, Hocking JS, Law MG, Petoumenos K, Bateson D, Murray GL, Donovan B, Chow EPF, et al. Male-Partner Treatment to Prevent Recurrence of Bacterial Vaginosis. *N Engl J Med.* 2025;392:947–957. doi: 10.1056/NEJMoa2405404. Cited: in: : PMID: 40043236.

21. Baryakova TH, Pogostin BH, Langer R, McHugh KJ. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. *Nat Rev Drug Discov.* 2023;22:387–409. doi: 10.1038/s41573-023-00670-0. Cited: in: : PMID: 36973491.

22. Sousa LGV, Pereira SA, Cerca N. Fighting polymicrobial biofilms in bacterial vaginosis. *Microb Biotechnol.* 2023;16:1423–1437. doi: 10.1111/1751-7915.14261. Cited: in: : PMID: 37042412.

23. Tidbury F, Brülhart G, Müller G, Pavicic E, Weidlinger S, Eichner G, Von Wolff M, Stute P. Effectiveness and tolerability of lactic acid vaginal gel compared to oral metronidazole in the treatment of acute symptomatic bacterial vaginosis: a multicenter,

randomized-controlled, head-to-head pilot study. *BMC Women's Health.* 2025;25:7. doi: 10.1186/s12905-024-03513-1.

24. Arfiputri DS, Hidayati AN, Handayani S, Ervianti E. RISK FACTORS OF VULVOVAGINAL CANDIDIASIS IN DERMATO-VENEREOLOGY OUTPATIENTS CLINIC OF SOETOMO GENERAL HOSPITAL, SURABAYA, INDONESIA. *Afr J Infect Dis.* 2018;12:90–94. doi: 10.2101/Ajid.12v1S.13. Cited: in: : PMID: 29619437.

Author's Statement

The authors declared that all the images and figures in this manuscript is/are author's own work and/or has obtained necessary permission to re-use the content from the authors and publisher of respective materials.

(Eldy)