PENERAPAN METODE ROUGH – ORDINAL LOGISTIC REGRESSION UNTUK PEMODELAN FAKTOR-FAKTOR YANG MEMENGARUHI TINGKAT STRES MAHASISWA DALAM PEMBELAJARAN JARAK JAUH [APPLICATION OF THE ROUGH – ORDINAL LOGISTIC REGRESSION METHOD FOR MODELING FACTORS AFFECTING STRESS LEVELS OF STUDENTS IN DISTANCE LEARNING]

Sulistya Umie Ruhmana Sari, Dimas Femy Sasongko

Abstract


The COVID-19 pandemic has changed the whole way we live, especially in the field of education. Distance learning as a result of the COVID-19 pandemic has had a stressful effect on students. This study aims to model the factors that influence students' stress levels towards distance learning. A total of 256 students of the Faculty of Teacher Training at Maulana Malik Ibrahim Malang State Islamic University participated in answering a 4-scale Likert questionnaire that was analyzed using the ordinal logistic regression method. The results of the study prove that there are significant factors affecting student stress levels in distance learning during the pandemic. These factors are: (1) different environments between students and lecturers; (2) frequency of assignments; (3) difficulty in understanding the material; (4) strong internet connection; (5) difficulty in coordinating with groups; (6) non-fixed lecture schedules; (7) the number of activities at home; and, (8) internet quota needs. The power of association score R2 with the Nagelkerke method was obtained by 0.776 (77.6%) which means that 77.6% of the independent variables were able to explain the stress level of students.

BAHASA INDONESIA ABSTRACT: Pandemi covid-19 telah mengubah keseluruhan cara hidup kita, khususnya bidang pendidikan. Pembelajaran jarak jauh sebagai dampak dari adanya pandemic covid-19 telah memberikan pengaruh stres pada mahasiswa. Penelitian ini bertujuan untuk melakukan pemodelan terhadap faktor-faktor yang mempengaruhi tingkat stres mahasiswa terhadap pembelajaran jarak jauh. Sebanyak 256 mahasiswa Fakultas Ilmu Tarbiyah dan Keguruan UIN Maulana Malik Ibrahim Malang berpartisipasi dalam menjawab angket Likert berskala 4 dan dianalisis dengan metode regresi logistik ordinal. Hasil penelitian membuktikan bahwa terdapat faktor signifikan mempengaruhi tingkat stres mahasiswa dalam pembelajaran jarak jauh di masa pandemi. Faktor-faktor tersebut adalah: (1) lingkungan yang berbeda antara mahasiswa dengan dosen; (2) intensitas pemberian tugas; (3) kesulitan memahami materi; (4) kelancaran akses internet; (5) kesulitan berkoordinasi dengan kelompok; (6) jadwal perkuliahan yang tidak tetap; (7) banyaknya kegiatan di rumah, dan (8) kebutuhan kuota internet. Nilai kekuatan asosiasi R2 dengan metode Nagelkerke diperoleh sebesar 0,776 (77,6%) yang menunjukkan bahwa 77,6 %  variabel bebas mampu menjelaskan tingkat stres mahasiswa.


Keywords


ordinal logistic regression; stress levels; distance learning; regresi logistik ordinal; tingkat stres; pembelajaran jarak jauh



DOI: http://dx.doi.org/10.19166/johme.v6i1.4696

Full Text:

PDF

References


Agresti, A. (2002). Categorical data analysis. Hoboken, NJ: Wiley-Interscience.

Bai, J. (2016). Perceived support as a predictor of acculturative stress among international students in the United States. Journal of International Students, 6(1), 93–106. https://doi.org/10.32674/jis.v6i1.483

Desky, D. F. (2021). Pengaruh pandemi covid - 19 terhadap tingkat stres dan pola tidur pada mahasiswa fakultas kedokteran Universitas Sumatera Utara [Undergraduate Thesis]. Retrieved from http://repositori.usu.ac.id/bitstream/handle/123456789/30845/170100039.pdf?sequence=1&isAllowed=y

Ganesan, Y., Talwar, P., Norsiah, F., & Oon, Y. B. (2018). A study on stress level and coping strategies among undergraduate students. Journal of Cognitive Sciences and Human Development, 3(2), 37–47. https://doi.org/10.33736/jcshd.787.2018

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. In Wiley Series in Probability and Statistics. https://doi.org/10.1002/9781118548387

Karin, K., Efendi, R., Chairani, L., & Sari, I. M. (2021). Implementasi regresi logistik ordinal pada sistem pembelajaran daring di era covid-19 terhadap kesehatan mental guru SD di kota Pekanbaru. Jurnal Sains Matematika dan Statistika, 7(1), 65-74. https://doi.org/10.24014/jsms.v7i1.11786

Khaza, A. (2021). Analisa permasalahan “industri mebel” saat pandemi. Retrieved from https://www.kompasiana.com/ahmad93740/6139dd0206310e723c41a3c2/analisa-permasalahan-industri-mebel-saat-pandemi

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models. New York, NY: McGraw-Hill/Irwin.

Martoredjo, N. T. (2020). Pandemi covid-19: Ancaman atau tantangan bagi sektor pendidikan? [Unpublished Paper]. Retrieved from http://eprints.binus.ac.id/36494/

Musabiq, S., & Karimah, I. (2018). Gambaran stress dan dampaknya pada mahasiswa. Insight: Jurnal Ilmiah Psikologi, 20(2), 75-83. https://doi.org/10.26486/psikologi.v20i2.240

Musradinur. (2016). Stres dan cara mengatasinya dalam perspektif psikologi. Jurnal EDUKASI (Media Kajian Bimbingan Konseling), 2(2), 183-200. https://doi.org/10.22373/je.v2i2.815

P2PTM Kemenkes RI. (2020). Apakah yang dimaksud stres itu? Retrieved from http://p2ptm.kemkes.go.id/infographic-p2ptm/stress/apakah-yang-dimaksud-stres-itu

Putri, N. I., & Budyanra. (2019). Penerapan regresi logistik ordinal dengan proportional odds model pada determinan tingkat stres akademik mahasiswa. Seminar Nasional Official Statistics 2019: Pengembangan Official Statistics dalam mendukung Implementasi SDG’s, 1, 368–378. https://doi.org/10.34123/semnasoffstat.v2019i1.104

Rahma, N. A., & Pujiastuti, H. (2021). Efektivitas pembelajaran daring matematika pada masa pandemi covid-19 di kota Cilegon. JOHME: Journal of Holistic Mathematics Education, 5(1), 1–12. https://doi.org/10.19166/johme.v5i1.3811

Ribeiro, F. M. S. S., Mussi, F. C., da Silva Pires, C. G., da Silva, R. M., de Macedo, T. T. S., & de Souza Teles Santos, C. A. (2020). Stress level among undergraduate nursing students related to the training phase and sociodemographic factors. Revista Latino-Americana de Enfermagem, 28, 1–11. https://doi.org/10.1590/1518-8345.3036.3209

Saleh, D., Camart, N., & Romo, L. (2017). Predictors of stress in college students. Frontiers in Psychology, 8, 1–8. https://doi.org/10.3389/fpsyg.2017.00019

Smeru. (2021). Ringkasan eksekutif: Dampak sosial ekonomi covid-19 terhadap rumah tangga dan rekomendasi kebijakan strategis untuk Indonesia. Retrieved from https://smeru.or.id/id/publication-id/ringkasan-eksekutif-dampak-sosial-ekonomi-covid-19-terhadap-rumah-tangga-dan

Stallman, H. M., & Hurst, C. P. (2016). The university stress scale: Measuring domains and extent of stress in university students. Australian Psychologist, 51(2), 128–134. https://doi.org/10.1111/ap.12127

Yuangga, K. D., & Sunarsi, D. (2020). Pengembangan media dan strategi pembelajaran untuk mengatasi permasalahan pembelajaran jarak jauh di pandemi covid-19. JGK: Jurnal Guru Kita, 4(3), 51-58. Retrieved from https://jurnal.unimed.ac.id/2012/index.php/jgkp/article/view/19472/13983


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sulistya Umie Ruhmana Sari, Dimas Femy Sasongko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

favicon Department of Mathematics Education | Universitas Pelita Harapan | Lippo Karawaci, Tangerang, Indonesia, 15811 | Tel +62 21 5466057 | Fax +62 21 5461055
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor