PREDICTING FACTORS THAT INFLUENCE ATTITUDE TO USE AND ITS IMPLICATIONS ON CONTINUANCE INTENTION TO USE SVOD: STUDY ON NETFLIX USERS OF INDONESIA [PREDIKSI FAKTOR-FAKTOR YANG MEMPENGARUHI SIKAP PENGGUNAAN DAN IMPLIKASINYA TERHADAP KEBERLANJUTAN NIAT PENGGUNAAN SVOD: STUDI PADA PENGGUNA NETFLIX di INDONESIA]

Elissa Lestari, Oei Richard Chandra Soesanto

Abstract


The increasing number of internet users in Indonesia, especially mobile internet users, has changed consumer habits and behavior in consuming entertainment. Internet penetration leads to the increasing consumption of streaming video on demand (SVOD) services in Indonesia, which is increasingly popular. Netflix is one of the largest SVOD service providers in the world that has a customer subscription system. The tight competition in the SVOD industry caused Netflix to experience a significant reduction in the number of global subscribers. Therefore, the researcher's goal is to predict which factors influence the consumer's decision-making process to continue to use Netflix in view of the model of consumer attitudes toward technology adoption. The research data come from non-probability sampling with judgmental sampling techniques of 237 Netflix’s subscribers across Indonesia that have subscribed Netflix for more than three months, and having an intensity of use for 2-5 hours or more per day.  This research was conducted with a quantitative descriptive method using Structural Equation Modelling method. This study  indicate that there’s a positive relationship between perceived system quality and perceived enjoyment of attitude to use. Furthermore, there is a negative influence between the perceived price level and attitude to use. This study also reaffirms that the SVOD attitude to use is a predictor of continuance intention to use SVOD. This research also proved that perceived ease of use, perceived content quality, customization, and perceived psychological risk did not affect the attitude to use SVOD.

Abstrak dalam Bahasa Indonesia. Dengan semakin meningkatnya jumlah pengguna internet di Indonesia, khususnya dari sisi pengguna internet seluler, telah mengubah kebiasaan dan perilaku konsumen dalam mengonsumsi hiburan. Penetrasi internet juga berdampak pada meningkatnya konsumsi layanan Streaming Video on Demand (SVOD) di Indonesia yang semakin populer. Netflix merupakan salah satu penyedia layanan SVOD terbesar di dunia yang memiliki sistem layanan pelanggan. Persaingan ketat di industri SVOD menyebabkan Netflix mengalami penurunan jumlah pelanggan global yang signifikan. Oleh karena itu, tujuan peneliti ini adalah untuk memprediksi faktor-faktor apa saja yang mempengaruhi proses pengambilan keputusan konsumen untuk terus menggunakan Netflix yang dilihat dari sisi model sikap konsumen terhadap adopsi suatu teknologi. Teknik pengambilan sampel dalam penelitian ini menggunakan non-probability sampling dengan teknik judgemental sampling terhadap 237 pelanggan Netflix di seluruh Indonesia yang telah berlangganan Netflix selama lebih dari tiga bulan, dan intensitas penggunaan selama 2-5 jam atau lebih per hari nya. Analisis Penelitian ini menggunakan metode deskriptif kuantitatif dengan metode Structural Equation Modeling (SEM). Hasil penelitian ini menunjukkan bahwa terhadap pengaruh positif antara kualitas sistem yang dirasakan (Perceived System Quality) dan kenikmatan yang dirasakan (Perceived Enjoyment) terhadap sikap untuk menggunakan (Attitude to Use). Selain itu, ada pengaruh negatif antara persepsi tingkat harga (Perceived Price Level) dan sikap penggunaan (Attitude to Use) SVOD. Penelitian ini juga menegaskan kembali bahwa sikap penggunaan SVOD merupakan prediktor niat untuk terus menggunakan SVOD (Continuance Intention to Use). Penelitian ini juga membuktikan bahwa persepsi kemudahan penggunaan (Perceived Ease of Use), persepsi kualitas konten (Perceived Content Quality), pengaturan ulang (Customization), dan persepsi risiko psikologis (Perceived Psychological Risk) tidak berpengaruh terhadap sikap penggunaan SVOD.


Keywords


Perceived System Quality; Perceived Enjoyment; Perceived Price Level; Attitude to use; Continuance Intention to Use; SVOD



DOI: http://dx.doi.org/10.19166/derema.v15i2.2541

Full Text

PDF

References


Aguete, M. R. (2019). Competing in a crowded streaming market. OMDIA Technology. https://technology.informa.com/618123/competing-in-a-crowded-streaming-market

Ajzen, I. (1985). From intentions to actions: A Theory of Planned Behavior. In J. Kuhl & J. Beckman (Eds.), Action-control: From cognition to behavior. Springer.

Ajzen, I., & Fishbein, M. (1977). Attitude-Behavior Relations: A Theoretical Analysis and Review of Empirical Research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888

Al-Debei, M. M., Akroush, M. N., & Ashouri, M. I. (2015). Consumer attitudes towards online shopping: The effects of trust, perceived benefits, and perceived web quality. In Internet Research, 25(5). https://doi.org/10.1108/IntR-05-2014-0146

Aladwani, A. M. (2006). An empirical test of the link between web site quality and forward enterprise integration with web consumers. Business Process Management Journal, 12(2), 178-190. https://doi.org/10.1108/14637150610657521

Alsajjan, B., & Dennis, C. (2010). Internet banking acceptance model: Cross-market examination. Journal of Business Research, 63(9-10), 957-963. https://doi.org/10.1016/j.jbusres.2008.12.014

Anderson, J. C., & Gerbing, D.W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103(3), 411–423. https://doi.org/10.1037/0033-2909.103.3.411

Baek, T., & Morimoto, M. (2012). Stay away from me. Journal of Advertising, 41(1), 59–76. https://doi.org/10.2753/JOA0091-3367410105

Bagozzi, R. P. (1992). The Self-Regulation of Attitudes, Intentions, and Behavior. Social Psychology Quarterly, 55(2), 178. https://doi.org/10.2307/2786945

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/BF02723327

Bashir, I., & Madhavaiah, C. (2015). Consumer attitude and behavioral intention towards Internet banking adoption in India. Journal of Indian Business Research, 7(1), 67–102. https://doi.org/10.1108/JIBR-02-2014-0013

Bettman, J. R. (1973). Perceived Risk and Its Components: A Model and Empirical Test. Journal of Marketing Research, 10(2), 184-190. https://doi.org/10.2307/3149824

Bhattacherjee, A. (2011). Qarterly CONTINUANCE: MIS Quarterly, 25(3), 351-370.

Bhukya, R., & Singh, S. (2015). The effect of perceived risk dimensions on purchase intention: An empirical evidence from the Indian private label market. American Journal of Business, 30(4), 218-230. https://doi.org/10.1108/AJB-10-2014-0055

Boulay, J. (2018). SVOD in Asia Pacific. https://dataxis.com/wp-content/uploads/2018/03/SVOD-in-Asia-Pacific--the-gold-rush.pdf

Breckler, S. J. (1984). Empirical validation of affect, behavior, and cognition as distinct components of attitude. Journal of Personality and Social Psychology, 47(6), 1191–1205. https://doi.org/10.1037/0022-3514.47.6.1191

Castañeda, J. A., Muñoz-Leiva, F., & Luque, T. (2007). Web Acceptance Model (WAM): Moderating effects of user experience. Information and Management, 44(4), 384–396. https://doi.org/10.1016/j.im.2007.02.003

Cenfetelli, R. T., Benbasat, I., & Al-Natour, S. (2009). Addressing the What and How of Online Services: Positioning Supporting-Services Functionality and Service Quality for Business-to-Consumer Success. Information Systems Research, 19(2).

Chang, C. C., Hung, S. W., Cheng, M. J., & Wu, C. Y. (2015). Exploring the intention to continue using social networking sites: The case of Facebook. Technological Forecasting and Social Change, 95, 48–56. https://doi.org/10.1016/j.techfore.2014.03.012

Chang, C. C. (2013). Exploring the determinants of e-learning systems continuance intention in academic libraries. Library Management, 34(1), 40–55. https://doi.org/10.1108/01435121311298261

Chen, H., Rong, W., Ma, X., Qu, Y., & Xiong, Z. (2017). An Extended Technology Acceptance Model for Mobile Social Gaming Service Popularity Analysis. Mobile Information Systems, 2017. https://doi.org/10.1155/2017/3906953

Chen, L., Meservy, T. O., & Gillenson, M. (2012). Understanding Information Systems Continuance for Information-Oriented Mobile Applications. Communications of the Association for Information Systems, 30. https://doi.org/10.17705/1cais.03009

Chen, M. Y., & Teng, C. I. (2013). A comprehensive model of the effects of online store image on purchase intention in an e-commerce environment. Electronic Commerce Research, 13(1), 1–23. https://doi.org/10.1007/s10660-013-9104-5

Cheong, J., & Park, M. C. (2005). Mobile internet acceptance in Korea. Internet Research, 15(2), 125-140. https://doi.org/10.1108/10662240510590324

Chiu, C. M., Chiu, C. S., & Chang, H. C. (2007). Examining the integrated influence of fairness and quality on learners' satisfaction and Web-based continuous learning intention. Information Systems Journal, 17(3), 271–287. https://doi.org/10.1111/j.1365-2575.2007.00238.x

Chou, J. S., & Hong, J. H. (2013). Assessing the impact of quality determinants and user characteristics on successful enterprise resource planning project implementation. Journal of Manufacturing Systems, 32(4), 792-800. https://doi.org/10.1016/j.jmsy.2013.04.014

cnbctv18.com. (2019). Netflix's subscriber growth falls off a cliff. Https://Www.Cnbctv18.Com/. https://www.cnbctv18.com/technology/netflixs-subscriber-growth-falls-off-a-cliff-4020711.htm

Cox, S. R., Rutner, P. S., & Dick, G. (2012). Information Technology Customization: How Is It Defined and How Are Customization Decisions Made? SAIS 2012 Proceedings, 1, 49-54.

Davis, F. D. (1987). 1 user acceptance TAM Davis.pdf.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.5962/bhl.title.33621

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

Delone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Management, 3(1), 60–95. https://doi.org/10.5267/j.uscm.2014.12.002

Delone, W. H., Mclean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30. ttps://doi.org/10.1080/07421222.2003.11045748

Detiknet. (2016). Finally! Netflix Officially Arrives in Indonesia. https://inet.detik.com/consumer/d-3112516/finally-netflix-resmi-hadir-di-indonesia

Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of Price, Brand, and Store Information on Buyers' Product Evaluations. Journal of Marketing Research, 28(3), 307-319. https://doi.org/10.1177/002224379102800305

Doll, W. J., Hendrickson, A., & Deng, X. (1998). Using Davis's perceived usefulness and ease-of-use instruments for decision making: A confirmatory and multigroup invariance analysis. Decision Sciences, 29(4), 839–869. https://doi.org/10.1111/j.1540-5915.1998.tb00879.x

Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human Computer Studies, 59(4), 451–474. https://doi.org/10.1016/S1071-5819(03)00111-3

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: an introduction to theory and research. Addison-Wesley.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Errors. Journal of Marketing Research, 18(1), 39. https://doi.org/10.2307/3151312

Gan, C., Wee, H. Y., Ozanne, L., Kao, T.-H. (2008). Consumers' purchasing behavior towards green products in New Zealand. Innovative Marketing, 4(1), 93–102.

Gao, J., Zhang, C., Wang, K., & Ba, S. (2012). Understanding online purchase decision making: The effects of unconscious thought, information quality, and information quantity. Decision Support Systems, 53(4), 772-781. https://doi.org/10.1016/j.dss.2012.05.011

Gilmore, J. H., & Pine, B. J. (2000). Markets of One: Creating Customer-Unique Value through Mass Customization. Boston, MA: Harvard Business School Press.

Govind, N., & Balachandran, A. (2016). Optimizing Content Quality Control at Netflix with Predictive Modeling. https://netflixtechblog.com/optimizing-content-quality-control-at-netflix-with-predictive-modeling-712281658ab9

Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under the wireless broadband wireless access environment. Information and Management, 44(3), 276–286. https://doi.org/10.1016/j.im.2007.01.001

Haines, M. N. (2009). Understanding enterprise system customization: An exploration of implementation realities and the key influence factors. Information Systems Management, 26(2), 182–198. https://doi.org/10.1080/10580530902797581

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis (7th ed.). Prentice Hall.

Heijden, H. van der. (2004). User Acceptance of Hedonic Information Systems. MIS Quarterly, 28(4), 695–704. https://doi.org/10.2307/25148660

Heijden, H. van der, Verhagen, T., & Creemers, M. (2003). Understanding online purchase intentions: Contributions from technology and trust perspectives. European Journal of Information Systems, 12(1), 41–48. https://doi.org/10.1057/palgrave.ejis.3000445

Hong, S., Kim, J., & Lee, H. (2008). Antecedents of Use-Continuance in Information Systems: Toward an Inegrative View. Journal of Computer Information Systems, 61–73.

Hsu, P. F., Yen, H. J. R., & Chung, J. C. (2015). Assessing ERP post-implementation success at the individual level: Revisiting the role of service quality. Information and Management, 52(8), 925–942. https://doi.org/10.1016/j.im.2015.06.009

Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the Determinants of Microcomputer Usage via a Structural Equation Model. Journal of Management Information Systems, 11(4), 87–114. https://doi.org/10.1080/07421222.1995.11518061

Indrawati, & Haryoto, K. S. (2015). The Use of Modified Theory of Acceptance and Use Of Technology 2 to Predict Prospective Users' Intention in Adopting TV Streaming. Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015, 125, 206–215.

Jacoby, J., & Kaplan, L. B. (1972). The Components of Perceived Risk. Proceedings of the Annual Conference of the Association for Consumer Research, 10, 382-393.

Jacoby, J., Olson, J. C., & Haddock, R. A. (1971). Price, brand name, and product composition characteristics as determinants of perceived quality. Journal of Applied Psychology, 55(6), 570–579. https://doi.org/10.1037/h0032045

JAKPAT Survey. (2019). What Indonesian Viewers Say About National TV and Digital Content? – JAKPAT Survey Report. https://blog.jakpat.net/what-indonesian-viewers-say-about-national-tv-and-digital-content-jakpat-survey-report/

Johnson, K. L., & Misic, M. M. (1999). Benchmarking: A tool for Web site evaluation and improvement. Internet Research, 9(5), 383–392. https://doi.org/10.1108/10662249910297787

Kalyanaraman, S., & Sundar, S. (2006). The psychological appeal of personalized content in web portals: Does customization affect attitudes and behavior? Journal of Communication, 56(1), 110–132. https://doi.org/10.1111/j.1460-2466.2006.00006.x

Klein, R. (2007). Customization and real time information access in integrated eBusiness supply chain relationships. Journal of Operations Management, 25(6), 1366–1381. https://doi.org/10.1016/j.jom.2007.03.001

Kobsa, A., Koenemann, J., & Pohl, W. (2001). Personalised hypermedia presentation techniques for improving online customer relationships. The Knowledge Engineering Review, 16(2), 111–155. https://doi.org/10.1017/s0269888901000108

Koivisto, M. (2008). Development of quality expectations in mobile information systems. Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, 336–341. https://doi.org/10.1007/978-1-4020-8735-6_63

Kulkarni, U. R., Ravindran, S., & Freeze, R. (2006). A knowledge management success model: Theoretical development and empirical validation. Journal of Management Information Systems, 23(3), 309–347. https://doi.org/10.2753/MIS0742-1222230311

Lai, V. S., & Li, H. (2005). Technology acceptance model for internet banking: An invariance analysis. Information and Management, 42(2), 373–386. https://doi.org/10.1016/j.im.2004.01.007

Lederer, A. L, Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). Technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269–282. https://doi.org/10.1016/S0167-9236(00)00076-2

Lee, B. C., Yoon, J. O., & Lee, I. (2009). Learners' acceptance of e-learning in South Korea: Theories and results. Computers and Education, 53(4), 1320–1329. https://doi.org/10.1016/j.compedu.2009.06.014

Lee, K. C., & Chung, N. (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean's model perspective. Interacting with Computers, 21(5–6), 385–392. https://doi.org/10.1016/j.intcom.2009.06.004

Lee, M.-C., & Tsai, T.-R. (2010). What Drives People to Continue to Play Online Games? An Extension of Technology Model and Theory of Planned Behavior. International Journal of Human-Computer Interaction, 26(6), 601–620. https://doi.org/10.1080/10447311003781318

Lee, M. C. (2010). Explaining and predicting users' continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers and Education, 54(2), 506–516. https://doi.org/10.1016/j.compedu.2009.09.002

Leon, S. (2018). Service mobile apps: a millennial generation perspective. Industrial Management and Data Systems, 118(9), 1837–1860. https://doi.org/10.1108/IMDS-10-2017-0479

Li, Y.-H., & Huang, J.-W. (2009). Applying Theory of Perceived Risk and Technology Acceptance Model in the Online Shopping Channel. World Academy of Science, Engineering and Technology, 53(1), 919–925. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.6343&rep=rep1&type=pdf

Liao, C., Lin, H. N., & Liu, Y. P. (2010). Predicting the use of pirated software: A contingency model integrating perceived risk with the theory of planned behavior. Journal of Business Ethics, 91(2), 237–252. https://doi.org/10.1007/s10551-009-0081-5

Liaw, S. S., & Huang, H. M. (2007). Investigating motivation, enjoyment, usefulness toward video on demand. 15th International Conference on Computers in Education: Supporting Learning Flow through Integrative Technologies, ICCE 2007, January 2007, 355–358.

Lim, K. B., Yeo, S. F., Goh, M. L., & Gan, J. A. X. (2018). A study on consumer adoption of ride-hailing apps in Malaysia. Journal of Fundamental and Applied Sciences ISSN, 10(6S), 1132–1142. https://doi.org/http://dx.doi.org/10.4314/jfas.v10i6s.74 1.

Lin, H. F. (2007). The role of online and offline features in sustaining virtual communities: An empirical study. Internet Research, 17(2), 119–138. https://doi.org/10.1108/10662240710736997

Liñán, F., & Chen, Y.-W. (2009). Development and Cross-Cultural Application of a Specific Instrument to Measure Entrepreneurial Intentions. Entrepreneurship Theory and Practice, 593–617. https://doi.org/10.1111/j.1540-6520.2009.00318.x

Liou, D. K., Hsu, L. C., & Chih, W. H. (2015). Understanding broadband television users' continuance intention to use. Industrial Management and Data Systems, 115(2), 210–234. https://doi.org/10.1108/IMDS-07-2014-0223

Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information and Management, 38(1), 23–33. https://doi.org/10.1016/S0378-7206(00)00049-5

Lu, J. (2014). Are Personal Innovativeness and Social Influence Critical to Internet Research Article information? Internet Research, 24(2), 134–159. https://doi.org/10.1108/IntR-05-2012-0100

Maciaszek, L. A., & Owoc, M. L. (2001). Designing Application Authorizations. Informing Science. https://doi.org/10.28945/2409

Maholtra, N. K. (2010). Marketing Research (4th ed.). Pearson.

McFarland, D. J., & Hamilton, D. (2006). Adding contextual specificity to the technology acceptance model. Computers in Human Behavior, 22(3), 427–447. https://doi.org/10.1016/j.chb.2004.09.009

Meier, D. (2019). Netflix loses 1.1 million US subscribers to Disney Plus. Www.Tvbeurope.Com. https://www.tvbeurope.com/business/netflix-loses-1-1-million-us- subscribers-to-disney-plus

Mirabito, M. M. A., & Morgenstern, B. (2014). New Communication Technology: Applications, Policy, and Impact. Focal Press.

Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information and Management, 38(4), 217–230. https://doi.org/10.1016/S0378-7206(00)00061-6

Nabavi, A., Taghavi-Fard, M.T., Hanafizadeh, P., & Taghva, M. R. (2016). Information Technology Continuance Intention: A Systematic Literature Review. International Journal of E-Business Research, 12(1), 58–95. https://doi.org/10.4018/IJEBR.2016010104

Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199–235. https://doi.org/10.1080/07421222.2005.11045823

Ng, E. H., & Kwahk, K. Y. (2010). Examining the determinants of mobile internet service continuance: A customer relationship development perspective. International Journal of Mobile Communications, 8(2), 210–229. https://doi.org/10.1504/IJMC.2010.031448

Ngai, E. W. T., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers and Education, 48(2), 250–267. https://doi.org/10.1016/j.compedu.2004.11.007

Nguyen, D. (2015). Understanding Perceived Enjoyment and Continuance Intention in Mobile Games. ICFAI Journal of Systems, 58. http://epub.lib.aalto.fi/fi/ethesis/pdf/14000/hse_ethesis_14000.pdf

Park, H. S. (2000). Relationships among attitudes and subjective norms: Testing the theory of reasoned action across cultures. Communication Studies, 51(2), 162–175. https://doi.org/10.1080/10510970009388516

PCmag.com. (2020). Video-on-demand. Pcmag.Com. https://www.pcmag.com/encyclopedia/term/video-on-demand

Peng, L., Wang, H., He, X., Guo, D., & Lin, Y. (2014). Exploring factors affecting the user adoption of call-taxi App. Proceedings of the 25th Australasian Conference on Information Systems, ACIS 2014.

Pertiwi, W. K. (2020). Penetrasi Internet di Indonesia Capai 64 Persen Artikel ini telah tayang di Kompas.com dengan judul “Penetrasi Internet di Indonesia Capai 64 Persen”. https://tekno.kompas.com/read/2020/02/20/14090017/penetrasi-internet-di-indonesia-capai-64-persen

Purnamaningsih, P., Erhan, T. P., & Rizkalla, N. (2019). Behavioral Intention Towards Application-Based Short- Distance Delivery Services Adoption In Indonesia. Review of Behavioral Aspect in Organizations & Society, 1(1), 77–86. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004

Ramayah, T., Ahmad, N. H., & Lo, M. C. (2010). The role of quality factors in intention to continue using an e-learning system in Malaysia. Procedia - Social and Behavioral Sciences, 2(2), 5422–5426. https://doi.org/10.1016/j.sbspro.2010.03.885

Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information and Management, 44(1), 90–103. https://doi.org/10.1016/j.im.2006.10.007

Schubert, P., & Selz, D. (1999). Web assessment - measuring the effectiveness of electronic commerce sites going beyond traditional marketing paradigms. Proceedings of the Hawaii International Conference on System Sciences, 00(c), 185. https://doi.org/10.1109/hicss.1999.772941

Seddon, P. B. (1997). A Respecification and Extension of the DeLone and McLean Model of IS Success. Information Systems Research, 8(3), 240–253. https://doi.org/10.1287/isre.8.3.240

Shiau, W. L., & Luo, M. M. (2010). Continuance intention of blog users: The impact of perceived enjoyment and user involvement. PACIS 2010 - 14th Pacific Asia Conference on Information Systems, 856–867.

Shih, H. P. (2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information and Management, 41(3), 351–368. https://doi.org/10.1016/S0378-7206(03)00079-X

Shin, D.-H. (2012). 3DTV as a social platform for communication and interaction. Information Technology & People, 25(1), 55–80. https://doi.org/10.1108/09593841211204344

Shin, D.-H. (2009a). An empirical investigation of a modified technology acceptance model of IPTV. Behavior and Information Technology, 28(4), 361–372. https://doi.org/10.1080/01449290701814232

Shin, D.-H. (2009b). Determinants of customer acceptance of multi-service network: An implication for IP-based technologies. Information and Management, 46(1), 16–22. https://doi.org/10.1016/j.im.2008.05.004

Sundar, S. S., & Kim, J. (2005). Interactivity and Persuasion. Journal of Interactive Advertising, 5(2), 5–18. https://doi.org/10.1080/15252019.2005.10722097

Tehubijuluw, F. K., & Sari, D. P. (2017). Pengaruh Bauran Pemasaran, Pester Power, Dan Heritage Terhadap Keputusan Pembelian Biskuit Merek Roma Malkist. Kompetensi - Jurnal Manajemen Bisnis, 12(1), 41–47.

Teng, C. I. (2010). Customization, immersion satisfaction, and online gamer loyalty. Computers in Human Behavior, 26(6), 1547–1554. https://doi.org/10.1016/j.chb.2010.05.029

Ueltschy, L., Krampf, R. F., & Yannopoulos, P. (2018). A Cross-National Study Of Perceived Consumer Risk Towards Online (Internet) Purchasing. Multinational Business Review, 12(2), 59–82. https://doi.org/10.1108/1525383X200400010

Venkatesh, V. (2000). Determinants of perceived ease of use : integrating control , intrinsic motivation , acceptance model. Inorganic Chemistry Communications, 11(3), 319–340. https://doi.org/10.5962/bhl.title.33621

Verhagen, T., Meents, S., & Tan, YH (2006). Perceived risk and trust associated with purchasing at electronic marketplaces. European Journal of Information Systems, 15(6), 542–555. https://doi.org/10.1057/palgrave.ejis.3000644

Vijayasarathy, LR (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information and Management, 41(6), 747–762. https://doi.org/10.1016/j.im.2003.08.011

Wakefield, RL, & Whitten, D. (2006). Mobile computing: A user study on hedonic/utilitarian mobile device usage. European Journal of Information Systems, 15(3), 292–300. https://doi.org/10.1057/palgrave.ejis.3000619

Weniger, S. (2010). User adoption of IPTV: A research model. BLED Proceedings, 30, 154–165.

Wixom, BH, & Todd, PA (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85–102.

Yoo, WS, Suh, KS, & Lee, MB (2001). Exploring the factors enhancing member participation in virtual communities. Pacific Asia Conference on Information Systems (PACIS), 551–570. https://doi.org/10.4018/jgim.2002070104

Zarrad, H., & Debabi, M. (2012). Online Purchasing Intention: Factors and Effects. International Business and Management, 4(41), 37–47. https://doi.org/10.3968/j.ibm.1923842820120401.2115

Zeithaml, VA (1988). of Consumer Perceptions A Means-End Value : Quality , and Model Synthesis of Evidence. Journal of Marketing, 52(3), 2–22.


Cited by

  • There are currently no citations to this article.




Copyright (c) 2020 Elissa Lestari, Oei Richard Chandra Soesanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


favicon Department of Management | Business School | Universitas Pelita Harapan | Indonesia | +62 21 546 0901 |  jurnal.derema@uph.edu

 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor