The Effect of E-Commerce Awareness in E-Commerce Technology Acceptance on MSME in Bandung

Gina Apryani Nurunnisha, Gallang Perdhana Dalimunthe


Electronic-commerce (E-Commerce) has become an important channel for conducting business. Researchers as well as market executives are trying to find e-commerce consumer behavior, especially Micro Small Medium Enterprise (MSME) in Bandung. The aim of this paper is to investigate what factors affect the technology acceptance of e-commerce in Bandung, which intended to identify what improvement can be made for the future. The data for this research were collected from 133 respondents MSMEs that never use e-commerce for their business process. The research model is based on Technology Acceptance Model (TAM). Results showed that awareness has positive indirect influence to intention use but, perceived usefulness has insignificant affect towards intention to use. In conclusion, from the percentage of influence toward behavioral intention, perceived usefulness has higher total effect value compared to perceived ease of use, that is 56%. Based on previous analyzes also known that can directly affect the perceived usefulness of behavioral intention, in contrast to the perceived ease of use that must pass variables perceived usefulness beforehand. Therefore, the most important for MSMEs is the increasing number of benefits when they use e-commerce.

Abstrak dalam Bahasa Indonesia : Electronic-commerce (E-Commerce) telah menjadi saluran penting untuk melakukan bisnis. Para peneliti serta para eksekutif pasar berusaha mencari perilaku konsumen e-commerce, khususnya Usaha Mikro Kecil Menengah (UMKM) di Bandung. Tujuan dari penelitian ini adalah untuk menyelidiki faktor-faktor apa yang mempengaruhi penerimaan teknologi e-commerce di Bandung, yang dimaksudkan untuk mengidentifikasi perbaikan apa yang dapat dilakukan untuk masa depan. Data untuk penelitian ini dikumpulkan dari 133 responden UMKM yang belum pernah menggunakan e-commerce untuk proses bisnis mereka. Model penelitian didasarkan pada Technology Acceptance Model (TAM). Hasil penelitian menunjukkan bahwa Kesadaran (awareness) memiliki pengaruh positif tidak langsung terhadap niat menggunakan (intention to use) e-commerce tetapi, kegunaan yang dirasakan (perceived usefulness) memiliki pengaruh yang tidak signifikan terhadap niat menggunakan (intention to use). Kesimpulannya, dari persentase pengaruh terhadap niat menggunakan (intention to use), kegunaan yang dirasakan (perceived usefulness) memiliki nilai total efek yang lebih tinggi dibandingkan dengan persepsi kemudahan penggunaan (perceived ease of use), yaitu 56%. Berdasarkan analisis sebelumnya juga diketahui bahwa secara langsung dapat mempengaruhi kegunaan yang dirasakan dari niat perilaku, berbeda dengan persepsi kemudahan penggunaan yang harus melewati variabel yang dirasakan kegunaan sebelumnya. Oleh karena itu, yang paling penting bagi UMKM adalah meningkatnya jumlah manfaat ketika mereka menggunakan e-commerce.



e-commerce; TAM; Awareness; Perceived Usefulness; Perceived Ease of Use; Behavior Intention


Full Text



Adam, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly, 16(2), 227-247.

Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405–420.

Ajzen I, & Fishbein M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.

Ajzen, I. (2005). Attitudes, personality and behavior (2nd ed.). Berkshire, England: Open University Press.

Al-Somali, S. A., Gholami, R., & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130–141.

Brown I, & Jayakody R.(2009). B2C e-Commerce success: A test and validation of a revised conceptual model. Electronic Journal of Information Systems Evaluation, 11(3),167–184.

Central Bureau of Statistics Regional Bandung, 2016.

Chen, C. (2013). Perceived risk, usage frequency of mobile banking services. Managing Service Quality: An International Journal, 23(5), 410–436.

Chiou, W.-C., Perng, C., & Lin, C.-C. (2009). The relationship between technology acceptance model and usability test - case of performing E-learning task with PDA. 2009 WASE International Conference on Information Engineering.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319.

Hair, J. T., Anderson, R. E., Tatham, R. L. & Black, W. C. (1992). Multivariate data analysis with readings (3rd ed.). New York: Macmillan.

Hill, R. J., Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention and behavior: An introduction to theory and research. Contemporary Sociology, 6(2), 244.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. MIS Quarterly, 27(1), 51.

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in international marketing, 20, 277-319.

Hong, S., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834.

Huang, D.-L., Patrick Rau, P.-L., Salvendy, G., Gao, F., & Zhou, J. (2011). Factors affecting perception of information security and their impacts on IT adoption and security practices. International Journal of Human-Computer Studies, 69(12), 870–883.

Ibna, A. (2009). Penggunaan kerangka technology acceptance model di dalam melakukan faktor-faktor yang mempengaruhi adopsi e-government pemko Medan. Medan, Indonesia: Universitas Sumatera Utara Medan.

Jackson, C. M., Chow, S., & Leitch, R. A. (1997). Toward an Understanding of the behavioral intention to use an information system. Decision Sciences, 28(2), 357–389.

Jung, Y., Perez-Mira, B., & Wiley-Patton, S. (2009). Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in Human Behavior, 25(1), 123–129.

Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.

Lal, K. (1999). Determinants of the adoption of information technology: A case study of electrical and electronic goods manufacturing firms in India. Research Policy, 28(7), 667–680.

Lal, K. (2005). Determinants of the adoption of e-business technologies. Telematics and Informatics, 22(3), 181–199.

Laudon, K. C., & Traver, C. G. (2014). E-commerce: Business, Technology, Society (10th ed.). Boston, MA: Pearson Education, Inc.

Laukkanen, T., Sinkkonen, S., Kivijarvi, M., & Laukkanen, P. (2007). Segmenting bank customers by resistance to mobile banking. International Conference on the Management of Mobile Business (ICMB 2007).

Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model past, present, future. Communication of The Association for Information System (CAIS), 12, 752-780.

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.

López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359–364.

Ministry of Cooperatives and Small and Medium Enterprises, 2016.

Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. Journal of Business Research, 59(9), 999–1007.

Qazi, W., Raza, S. A., & Shah, N. (2018). Acceptance of e-book reading among higher education students in a developing country: The modified diffusion innovation theory. International Journal of Business Information Systems, 27(2), 222.

Sekaran, U. (1992). Research methods for business. New York: John Willey & Sons.

Sekaran, U. (2003). Research method for business: A skill building approach. New York: John Wiley and Sons, Inc.

Undang-Undang Republik Indonesia Nomor 20 Tahun 2008 Tentang Usaha Mikro, Kecil Dan Menengah Pasal 6 Tahun 2008.

Woodroof, J. B., & Kasper, G. M. (1998). A conceptual development of process and outcome user satisfaction. Information Resources Management Journal, 11(2), 37-43.

Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481.

Venkatesh, V., & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS quarterly, 24(1), 115–139.

Yamin, S. & Kurniawan, H. (2011). Generasi baru mengolah data penelitian dengan PARTIAL LEAST SQUARE PATH MODELING aplikasi dengan software XLSTAT, SmartPLS dan Visual PLS. Jakarta, Indonesia: Salemba Infotek.

Yuan, Y.-H., Tsai, S.-B., Dai, C.-Y., Chen, H.-M., Chen, W.-F., Wu, C.-H., & Wang, J. (2017). An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer. PLOS ONE, 12(9), 1-22.

Cited by

  • There are currently no citations to this article.

Copyright (c) 2018 Gina Apryani Nurunnisha; Gallang Perdhana Dalimunthe

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

favicon Department of Management | Business School | Universitas Pelita Harapan | Indonesia | +62 21 546 0901 |